19,505 research outputs found

    Tools and collaborative environments for bioinformatics research

    Get PDF
    Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies

    Sticks, balls or a ribbon? Results of a formative user study with bioinformaticians

    Get PDF
    User interfaces in modern bioinformatics tools are designed for experts. They are too complicated for\ud novice users such as bench biologists. This report presents the full results of a formative user study as part of a\ud domain and requirements analysis to enhance user interfaces and collaborative environments for\ud multidisciplinary teamwork. Contextual field observations, questionnaires and interviews with bioinformatics\ud researchers of different levels of expertise and various backgrounds were performed in order to gain insight into\ud their needs and working practices. The analysed results are presented as a user profile description and user\ud requirements for designing user interfaces that support the collaboration of multidisciplinary research teams in\ud scientific collaborative environments. Although the number of participants limits the generalisability of the\ud findings, the combination of recurrent observations with other user analysis techniques in real-life settings\ud makes the contribution of this user study novel

    MammoSapiens: eResearch of the lactation program.

    Full text link
    Delivering bioinformatics power to life science researchers inevitably runs into problems of limited computing resources in the context of exponentially increasing data sources, access time, costs, lack of skills and, rapidly evolving technology and software tools with poorly defined standards. In this context the development of e-facilities to best enable collaborative research often needs to be customized to specific project applications in close cooperation with the experimentalist users and, to be concerned with the storage and management of results to allow more consistency and traceability of e-results on a broad access data mining platform. Here we showcase an internet based eResearch platform using the PHP/MySQL paradigm for the collaborative, integrative and comparative analysis of lactation related gene sequences and gene expression experiments to support lactation research. We also illustrate how these resources are used, how they enable research by allowing meta-analysis of data and results and, how the bottom-up development of customized eResearch components can lead to the production of more generic functional software tools and eResearch environments for deployment to a larger number of biological research users working on other bio-systems.<br /

    MammoSapiens: eResearch of the lactation program. Building online facilities for collaborative molecular and evolutionary analysis of lactation and other biological systems from gene sequences and gene expression data.

    Get PDF
    Delivering bioinformatics power to life science researchers inevitably runs into problems of limited computing resources in the context of exponentially increasing data sources, access time, costs, lack of skills and, rapidly evolving technology and software tools with poorly defined standards. In this context the development of online facilities to best enable collaborative research often needs to be customized to specific project applications in close cooperation with the experimentalist users and, to be concerned with the storage and management of results to allow more consistency and traceability of results on a broad access data mining platform. Here we showcase an Internet based research platform using the PHP/MySQL paradigm for the collaborative, integrative and comparative analysis of lactation related gene sequences and gene expression experiments to support lactation research. We also illustrate how these resources are used, how they enable research by allowing meta-analysis of data and results and, how the bottom-up development of customized eResearch components can lead to the production of more generic functional software tools and eResearch environments for deployment to a larger number of biological researchers working on other bio-systems

    Applying a User-centred Approach to Interactive Visualization Design

    Get PDF
    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches

    Optimizing Splicing Junction Detection in Next Generation Sequencing Data on a Virtual-GRID Infrastructure

    Get PDF
    The new protocol for sequencing the messenger RNA in a cell, named RNA-seq produce millions of short sequence fragments. Next Generation Sequencing technology allows more accurate analysis but increase needs in term of computational resources. This paper describes the optimization of a RNA-seq analysis pipeline devoted to splicing variants detection, aimed at reducing computation time and providing a multi-user/multisample environment. This work brings two main contributions. First, we optimized a well-known algorithm called TopHat by parallelizing some sequential mapping steps. Second, we designed and implemented a hybrid virtual GRID infrastructure allowing to efficiently execute multiple instances of TopHat running on different samples or on behalf of different users, thus optimizing the overall execution time and enabling a flexible multi-user environmen

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others
    corecore