332,657 research outputs found

    Analysis and design of power delivery networks exploiting simulation tools and numerical optimization techniques

    Get PDF
    A higher performance of computing systems is being demanded year after year, driving the digital industry to fiercely compete for offering the fastest computer system at the lowest cost. In addition, as computing system performance is growing, power delivery networks (PDN) and power integrity (PI) designs are getting increasingly more relevance due to the faster speeds and more parallelism required to obtain the required performance growth. The largest data throughput at the lowest power consumption is a common goal for most of the commercial computing systems. As a consequence of this performance growth and power delivery tradeoffs, the complexity involved in analyzing and designing PDN in digital systems is being increased. This complexity drives longer design cycle times when using traditional design tools. For this reason, the need of using more efficient design methods is getting more relevance in order to keep designing and launching products in a faster manner to the market. This trend pushes PDN designers to look for methodologies to simplify analysis and reduce design cycle times. The main objective for this Master’s thesis is to propose alternative methods by exploiting reliable simulation approaches and efficient numerical optimization techniques to analyze and design PDN to ensure power integrity. This thesis explores the use of circuital models and electromagnetic (EM) field solvers in combination with numerical optimization methods, including parameter extraction (PE) formulations. It also establishes a sound basis for using space mapping (SM) methodologies in future developments, in a way that we exploit the advantages of the most accurate and powerful models, such as 3D full-wave EM simulators, but conserving the simplicity and low computational resourcing of the analytical, circuital, and empirical models

    RTL2RTL Formal Equivalence: Boosting the Design Confidence

    Full text link
    Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) constraints force a faster design and validation closure. This in turn enforces novel ways of identifying and debugging behavioral inconsistencies early in the design cycle. Addition of incremental features and timing fixes may alter the legacy design behavior and would inadvertently result in undesirable bugs. The most common method of verifying the correctness of the changed design is to run a dynamic regression test suite before and after the intended changes and compare the results, a method which is not exhaustive. Modern Formal Verification (FV) techniques involving new methods of proving Sequential Hardware Equivalence enabled a new set of solutions for the given problem, with complete coverage guarantee. Formal Equivalence can be applied for proving functional integrity after design changes resulting from a wide variety of reasons, ranging from simple pipeline optimizations to complex logic redistributions. We present here our experience of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking the design sanity in a very short time, thus enabling faster and safer design churn. The techniques presented in this paper are applicable to any complex hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195
    • …
    corecore