86 research outputs found

    Even Shorter Proofs Without New Variables

    Get PDF

    Even shorter proofs without new variables

    Full text link
    Proof formats for SAT solvers have diversified over the last decade, enabling new features such as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints, and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some theoretical work has been undertaken to better explain their limits and semantics. In this work, we combine the subsumption redundancy notion from (Buss, Thapen 2019) and the overwrite logic framework from (Rebola-Pardo, Suda 2018). Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole principle (compared to those from (Heule, Kiesl, Biere 2017)) and smaller unsatisfiable core generation.Comment: 21 page

    Parallel bug-finding in concurrent programs via reduced interleaving instances

    Get PDF
    Concurrency poses a major challenge for program verification, but it can also offer an opportunity to scale when subproblems can be analysed in parallel. We exploit this opportunity here and use a parametrizable code-to-code translation to generate a set of simpler program instances, each capturing a reduced set of the original program’s interleavings. These instances can then be checked independently in parallel. Our approach does not depend on the tool that is chosen for the final analysis, is compatible with weak memory models, and amplifies the effectiveness of existing tools, making them find bugs faster and with fewer resources. We use Lazy-CSeq as an off-the-shelf final verifier to demonstrate that our approach is able, already with a small number of cores, to find bugs in the hardest known concurrency benchmarks in a matter of minutes, whereas other dynamic and static tools fail to do so in hours

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit präsentiert Ansätze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlässlicher und klarer verständlich zu machen. Zuerst werden zwei Algorithmen für heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte für Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte für Kosten und beschränkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprünglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und Optimalitätsbeweise für die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfähig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen Zustandsräumen sogar übertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) für die Qualitätsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingeführt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexität der NN-Analyse in Kombination mit dem State Space Explosion Problem bewältigt

    Controlled and effective interpolation

    Get PDF
    Model checking is a well established technique to verify systems, exhaustively and automatically. The state space explosion, known as the main difficulty in model checking scalability, has been successfully approached by symbolic model checking which represents programs using logic, usually at the propositional or first order theories level. Craig interpolation is one of the most successful abstraction techniques used in symbolic methods. Interpolants can be efficiently generated from proofs of unsatisfiability, and have been used as means of over-approximation to generate inductive invariants, refinement predicates, and function summaries. However, interpolation is still not fully understood. For several theories it is only possible to generate one interpolant, giving the interpolation-based application no chance of further optimization via interpolation. For the theories that have interpolation systems that are able to generate different interpolants, it is not understood what makes one interpolant better than another, and how to generate the most suitable ones for a particular verification task. The goal of this thesis is to address the problems of how to generate multiple interpolants for theories that still lack this flexibility in their interpolation algorithms, and how to aim at good interpolants. This thesis extends the state-of-the-art by introducing novel interpolation frameworks for different theories. For propositional logic, this work provides a thorough theoretical analysis showing which properties are desirable in a labeling function for the Labeled Interpolation Systems framework (LIS). The Proof-Sensitive labeling function is presented, and we prove that it generates interpolants with the smallest number of Boolean connectives in the entire LIS framework. Two variants that aim at controlling the logical strength of propositional interpolants while maintaining a small size are given. The new interpolation algorithms are compared to previous ones from the literature in different model checking settings, showing that they consistently lead to a better overall verification performance. The Equalities and Uninterpreted Functions (EUF)-interpolation system, presented in this thesis, is a duality-based interpolation framework capable of generating multiple interpolants for a single proof of unsatisfiability, and provides control over the logical strength of the interpolants it generates using labeling functions. The labeling functions can be theoretically compared with respect to their strength, and we prove that two of them generate the interpolants with the smallest number of equalities. Our experiments follow the theory, showing that the generated interpolants indeed have different logical strength. We combine propositional and EUF interpolation in a model checking setting, and show that the strength of the interpolation algorithms for different theories has to be aligned in order to generate smaller interpolants. This work also introduces the Linear Real Arithmetic (LRA)-interpolation system, an interpolation framework for LRA. The framework is able to generate infinitely many interpolants of different logical strength using the duality of interpolants. The strength of the LRA interpolants can be controlled by a normalized strength factor, which makes it straightforward for an interpolationbased application to choose the level of strength it wants for the interpolants. Our experiments with the LRA-interpolation system and a model checker show that it is very important for the application to be able to fine tune the strength of the LRA interpolants in order to achieve optimal performance. The interpolation frameworks were implemented and form the interpolation module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has been integrated to the propositional interpolation-based model checkers FunFrog and eVolCheck, and to the first order interpolation-based model checkerHiFrog. This thesis presents real life model checking experiments using the novel interpolation frameworks and the tools aforementioned, showing the viability and strengths of the techniques
    • …
    corecore