28 research outputs found

    NETTAB 2012 on “Integrated Bio-Search”

    Get PDF
    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement

    GlycoDigest: a tool for the targeted use of exoglycosidase digestions in glycan structure determination

    Get PDF
    Summary: Sequencing oligosaccharides by exoglycosidases, either sequentially or in an array format, is a powerful tool to unambiguously determine the structure of complex N- and O-link glycans. Here, we introduce GlycoDigest, a tool that simulates exoglycosidase digestion, based on controlled rules acquired from expert knowledge and experimental evidence available in GlycoBase. The tool allows the targeted design of glycosidase enzyme mixtures by allowing researchers to model the action of exoglycosidases, thereby validating and improving the efficiency and accuracy of glycan analysis. Availability and implementation: http://www.glycodigest.org. Contact: [email protected] or [email protected]

    EK3D : An E. coli K antigen 3D Structural Database

    Get PDF
    Diseases caused by multi drug resistant Gram-negative bacterial strains such as Enterobacteriaceae members (Salmonella, Pseudomonas & Klebsiella) claim millions of lives every year. One of the major virulence determinants of these bacteria are the polymeric surface antigens like capsular polysaccharides (CPS), exopolysaccharides (EPS) & lipopolysaccharides (LPS). A detailed understanding of these surface antigens is essential to develop drugs against bacterial infections. However, this is made difficult by the large variety of surface antigens that have been discovered to date

    Biosimilars in Europe

    Get PDF
    This reprint examines regulatory, pricing and reimbursement issues related to the market access and uptake of off-patent biologics, biosimilars, next-generation biologics and competing innovative medicines in European countries

    High-throughput mass spectrometric N-glycomics

    Get PDF
    Glycosylation is an important way in which proteins, the functional agents of our body, can be modified to alter and expand their functional repertoire. Glycans consist of monosaccharides that are linked in a chained and branching fashion, often to form specific epitopes that are of clinical and biopharmaceutical interest. In order to study glycosylation, there is a need for high-throughput analysis methodology. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a prominent example of this, as it can rapidly provide information on the monosaccharide compositions of glycans. However, it is challenging for the method to yield information on the structural aspects of glycosylation, as well as on glycans carrying sialic acids. These sialylated glycans are prone to in-source and metastable decay, and tend to require chemical derivatization to allow their analysis. The aim of this thesis is the development and application of new methodology for MALDI-MS N-glycomics, and, with a focus on metabolic syndrome and rheumatoid arthritis, to increase our understanding of the role of N-glycosylation in health and disease. A principal outcome of the work is a sialic acid derivatization protocol that allows the mass-based discrimination of alpha-2,3- and alpha-2,6-linked sialic acids, facilitating their study in a high-throughput setting. LUMC / Geneeskund

    Bionanotechnology to Save the Environment

    Get PDF
    Nanotechnology is the science of manipulating atoms and molecules in the nanoscale thousand times smaller than the width of a human hair. The world market for products that contain nanomaterials is expected to increase enormously in the future. The use of nanotechnology has stretched across various streams of science, from electronics to medicine and has also found applications in the field of cosmetics. How will this revolution impact our lifestyle and our planet? Very often the progresses of science, human knowledge and evolution of our lifestyle has been associated with devastating effects on our forests, oceans and more in general on our planet. The real challenge in the years to come is the sustainability of human evolution. The reader of this interesting book will discover how nanotechnology, and in particular nanomaterials derived from plant biomass and fishery’s waste, can improve the quality of our environment by reducing carbon emissions, improving the recycling of materials and even, in the long run, became a profitable business. Green nanotechnologies can be applied to a huge number of products ranging from intelligent textiles to smart drugs or functional polymers which can have a big impact on our daily lives, but nevertheless help us in saving our biodiversity and our planet. However, to fully achieve all these benefits, companies and scientists should be supported by National and International Agencies and Institutions in order to facilitate and support scientific development in this field allowing from one side the protection of intellectual property, but on the other giving accessibility of these technologies to emerging countries for improving the quality of life and the environment all over the world equally
    corecore