430 research outputs found

    Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types

    Get PDF
    Single point incremental forming (SPIF) is a relatively new manufacturing process that has been recently used to form medical grade titanium sheets for implant devices. However, one limitation of the SPIF process may be characterized by dimensional inaccuracies of the final part as compared with the original designed part model. Elimination of these inaccuracies is critical to forming medical implants to meet required tolerances. Prior work on accuracy characterization has shown that feature behavior is important in predicting accuracy. In this study, a set of basic geometric shapes consisting of ruled and freeform features were formed using SPIF to characterize the dimensional inaccuracies of grade 1 titanium sheet parts. Response surface functions using multivariate adaptive regression splines (MARS) are then generated to model the deviations at individual vertices of the STL model of the part as a function of geometric shape parameters such as curvature, depth, distance to feature borders, wall angle, etc. The generated response functions are further used to predict dimensional deviations in a specific clinical implant case where the curvatures in the part lie between that of ruled features and freeform features. It is shown that a mixed-MARS response surface model using a weighted average of the ruled and freeform surface models can be used for such a case to improve the mean prediction accuracy within ±0.5 mm. The predicted deviations show a reasonable match with the actual formed shape for the implant case and are used to generate optimized tool paths for minimized shape and dimensional inaccuracy. Further, an implant part is then made using the accuracy characterization functions for improved accuracy. The results show an improvement in shape and dimensional accuracy of incrementally formed titanium medical implants

    Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015

    Get PDF
    The last decade has seen considerable interest in flexible forming processes. Among the upcoming flexible forming techniques, one that has captured a lot of interest is single point incremental forming (SPIF), where a flat sheet is incrementally deformed into a desired shape by the action of a tool that follows a defined toolpath conforming to the final part geometry. Research on SPIF in the last ten years has focused on defining the limits of this process, understanding the deformation mechanics and material behaviour and extending the process limits using various strategies. This paper captures the developments that have taken place over the last decade in academia and industry to highlight the current state of the art in this field. The use of different hardware platforms, forming mechanics, failure mechanism, estimation of forces, use of toolpath and tooling strategies, development of process planning tools, simulation of the process, aspects of sustainable manufacture and current and future applications are individually tracked to outline the current state of this process and provide a roadmap for future work on this process

    Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques

    Get PDF
    A new methodology of generating optimized tool paths for incremental sheet forming is proposed in this work. The objective is to make parts with improved accuracy. To enable this, a systematic, automated technique of creating intermediate shapes using a morph mapping strategy is developed. This strategy is based on starting with a shape different from the final shape, available as a triangulated STL model, and using step-wise incremental deformation to the original mesh to arrive at the final part shape. Further, optimized tool path generation requires intelligent sequencing of partial tool paths that may be applied specifically to certain features on the part. The sequencing procedure is discussed next and case studies showing the application of the integrated technique are illustrated. The accuracy of the formed parts significantly improves using this integrated technique. The maximum deviations are brought down to less than 1 mm, while average absolute deviations of less than 0.5 mm are recorded

    Part accuracy improvement in two point incremental forming with a partial die using a model predictive control algorithm

    Get PDF
    As a flexible forming technology, Incremental Sheet Forming (ISF) is a promising alternative to traditional sheet forming processes in small-batch or customised production but suffers from low part accuracy in terms of its application in the industry. The ISF toolpath has direct influences on the geometric accuracy of the formed part since the part is formed by a simple tool following the toolpath. Based on the basic structure of a simple Model Predictive Control (MPC) algorithm designed for Single Point Incremental Forming (SPIF) in our previous work Lu et al. (2015) [1] that only dealt with the toolpath correction in the vertical direction, an enhanced MPC algorithm has been developed specially for Two Point Incremental Forming (TPIF) with a partial die in this work. The enhanced control algorithm is able to correct the toolpath in both the vertical and horizontal directions. In the newly-added horizontal control module, intensive profile points in the evenly distributed radial directions of the horizontal section were used to estimate the horizontal error distribution along the horizontal sectional profile during the forming process. The toolpath correction was performed through properly adjusting the toolpath in two directions based on the optimised toolpath parameters at each step. A case study for forming a non-axisymmetric shape was conducted to experimentally validate the developed toolpath correction strategy. Experiment results indicate that the two-directional toolpath correction approach contributes to part accuracy improvement in TPIF compared with the typical TPIF process that is without toolpath correction

    Accuracy and Surface Quality Improvements in the Manufacturing of Ti-6Al-4V Parts Using Hot Single Point Incremental Forming

    Get PDF
    The present work focuses on the manufacturing of Ti-6Al-4V parts using hot single point incremental forming (SPIF), a non-conventional forming technology mainly oriented toward the fabrication of prototypes, spare parts, or very low volume series. In the used procedure, the entire sheet is heated and kept at uniform temperature while the tool incrementally forms the part, with the limited accuracy of the obtained parts being the major drawback of the process. Thus, this work proposes two approaches to improve the geometric accuracy of Ti-6Al-4V SPIF parts: (i) correct the tool path by applying an intelligent process model (IPM) that counteracts deviations associated with the springback, and (ii) skip overforming deviations associated with the deflection of the sheet along the perimeter of the part based on a design improvement. For this purpose, a generic asymmetric design that incorporates features of a typical aerospace Ti-6Al-4V part is used. The results point out the potential of both solutions to significantly improve the accuracy of the parts. The application of the IPM model leads to an accuracy improvement up to 49%, whereas a 25.4% improvement can be attributed to the addendum introduction. The geometric accuracy study includes the two finishing operations needed to obtain the part, namely decontamination and trimming.Research leading to these results was done within the project INMA—Innovative manufacturing of complex titanium sheet components. This research was funded by the European Union´s Seventh Framework Programme for research, technological development, and demonstration under grant agreement number 266208

    Investigation of control of the incremental forming processes

    Get PDF

    Tool path design system to enhance accuracy during double sided incremental forming: An analytical model to predict compensations for small/large components

    Get PDF
    Double sided incremental forming (DSIF) has potential to form complex three-dimensional sheet metal components without using component specific tooling. Forming tool deflection and sheet spring-back are significant factors contributing to the geometrical inaccuracy of DSIF components. Numerical prediction and experimental measurement of sheet spring-back is time consuming. In addition, available analytical methods to predict and compensate sheet spring-back uses theory of small deflections by neglecting the membrane effects. With increase in sheet deflection beyond its thickness, membrane forces experienced by the middle plane of sheet due to stretching significantly resists the applied transverse load. In the present work, combination of small deflection and membrane theories are used to predict and compensate sheet deflections, so that a single methodology can be used for small as well as large components. Proposed methodology is validated using experimental and numerical predictions and they are in very good agreement. Two geometries (axisymmetric, free form components) with different component openings are formed to validate the proposed predictive methodology. Results indicate there is significant improvement (maximum error is less than 800 μm) in accuracy of components formed using compensated tool paths developed using proposed model. In addition, support tool maintained contact with component throughout forming (maximum force on the support tool is less than 60 N). © 2020 The Society of Manufacturing Engineer

    Emerging trends in single point incremental sheet forming of lightweight metals

    Get PDF
    Lightweight materials, such as titanium alloys, magnesium alloys, and aluminium alloys, are characterised by unusual combinations of high strength, corrosion resistance, and low weight. However, some of the grades of these alloys exhibit poor formability at room temperature, which limits their application in sheet metal-forming processes. Lightweight materials are used extensively in the automobile and aerospace industries, leading to increasing demands for advanced forming technologies. This article presents a brief overview of state-of-the-art methods of incremental sheet forming (ISF) for lightweight materials with a special emphasis on the research published in 2015–2021. First, a review of the incremental forming method is provided. Next, the effect of the process conditions (i.e., forming tool, forming path, forming parameters) on the surface finish of drawpieces, geometric accuracy, and process formability of the sheet metals in conventional ISF and thermally-assisted ISF variants are considered. Special attention is given to a review of the effects of contact conditions between the tool and sheet metal on material deformation. The previous publications related to emerging incremental forming technologies, i.e., laser-assisted ISF, water jet ISF, electrically-assisted ISF and ultrasonic-assisted ISF, are also reviewed. The paper seeks to guide and inspire researchers by identifying the current development trends of the valuable contributions made in the field of SPIF of lightweight metallic materials
    corecore