191 research outputs found

    Transformer innovation in a changing energy landscape – Part II

    Get PDF
    Reliability and resilience are two different concepts but closely related. Power grids need to be prepared to secure a continuous sourcing energy, and at the same time, be ready to react in case of incidents or events. The integration of renewables also possesses challenges to the efficiency and reliability of the transmission grids and distribution networks. Digitalization is a powerful tool to strengthen the power and distribution systems, but other traditional alternatives are also used with good results

    Extending the motion planning framework—MoveIt with advanced manipulation functions for industrial applications

    Get PDF
    MoveIt is the primary software library for motion planning and mobile manipulation in ROS, and it incorporates the latest advances in motion planning, control and perception. However, it is still quite recent, and some important functions to build more advanced manipulation applications, required to robotize many manufacturing processes, have not been developed yet. MoveIt is an open source software, and it relies on the contributions from its community to keep improving and adding new features. Therefore, in this paper, its current state is analyzed to find out which are its main necessities and provide a solution to them. In particular, three gaps of MoveIt are addressed: the automatic tool changing at runtime, the generation of trajectories with full control over the end effector path and speed, and the generation of dual-arm trajectories using different synchronization policies. These functions have been tested with a Motoman SDA10F dual-arm robot, demonstrating their validity in different scenarios. All the developed solutions are generic and robot-agnostic, and they are openly available to be used to extend the capabilities of MoveIt.publishedVersionPeer reviewe

    Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)

    Full text link
    [EN] One promising way to improve the efficiency of borehole heat exchangers (BHEs) in shallow geothermal applications is to enhance the thermal properties of the materials involved in its construction. Early attempts, such as using metal tubes in the 1980s or the utilization of thin-foil hoses, did not succeed in being adopted by the market for diverse reasons (cost, corrosion, fragility, etc...). In parallel, the optimization of pipe size, the use of double-U-tubes, thermally enhanced grout, etc. were able to bring the measure for the BHE efficiency, the borehole thermal resistance, from 0.20 to 0.15 K/(Wm) down to 0.08-0.06 K/(Wm) in the best solutions today. A further improvement cannot be expected without development of new, dedicated materials, combining the versatility of plastic like PE with an increased thermal conductivity that matches the respective properties of the rock and soil. This goal was included in the Strategic Research and Innovation Agenda of the European Technology Platform on Renewable Heating and Cooling in 2013. Within an EU supported project, both BHE pipes and grouting materials have been produced prototypically in small amounts, suitable for the first tests in the intended environment. The present work explains the research pathways envisaged and the resulting sensitivity analysis to highlight the influence of some of the most critical parameters that affect the overall performance of a GSHP system. The results have allowed guiding the real development of more efficient new advanced materials for different scenarios representative of different European regions. Finally the developed materials and their properties are discussed, including a comparative assessment about their compliance with reference material properties as currently seen in the BHE market.This article is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727583.Badenes Badenes, B.; Sanner, B.; Mateo Pla, MÁ.; Cuevas, JM.; Bartoli, F.; Ciardelli, F.; González, RM.... (2020). Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs). Energy. 201:1-17. https://doi.org/10.1016/j.energy.2020.117628117201Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378. doi:10.1016/j.energy.2017.12.037Li, H., Xu, W., Yu, Z., Wu, J., & Sun, Z. (2017). Application analyze of a ground source heat pump system in a nearly zero energy building in China. Energy, 125, 140-151. doi:10.1016/j.energy.2017.02.108Ozgener, O. (2010). Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy, 35(1), 262-268. doi:10.1016/j.energy.2009.09.018Jensen, J. K., Ommen, T., Markussen, W. B., & Elmegaard, B. (2017). Design of serially connected district heating heat pumps utilising a geothermal heat source. Energy, 137, 865-877. doi:10.1016/j.energy.2017.03.164A. C. Crandall, House heating with earth heat pump, Electr World, 126/19, 94-5 (1946).Moegle, E. (2009). Earth- and buildingsided characteristics of a geothermal energy field with five coaxial tubes erected in 1974 in Schoenaich (County of Boeblingen) – a contribution to history for near-surface geothermic drilling in Europe. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 91, 31-35. doi:10.1127/jmogv/91/2009/31Lundh, M., & Dalenbäck, J.-O. (2008). Swedish solar heated residential area with seasonal storage in rock: Initial evaluation. Renewable Energy, 33(4), 703-711. doi:10.1016/j.renene.2007.03.024Ground coupled heat pumps of high technology - groundhit, Funded by FP6-SUSTDEV - sustainable development, global change and ecosystems: thematic priority 6 under the focusing and integrating community research programme 2002-2006. Project ID: 503063.Go, G.-H., Lee, S.-R., Yoon, S., Park, H., & Park, Sk. (2014). Estimation and experimental validation of borehole thermal resistance. KSCE Journal of Civil Engineering, 18(4), 992-1000. doi:10.1007/s12205-014-0454-xZhang, S., Huang, Z., Li, G., Wu, X., Peng, C., & Zhang, W. (2018). Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Applied Thermal Engineering, 129, 1348-1357. doi:10.1016/j.applthermaleng.2017.10.042Fossa, M., & Minchio, F. (2013). The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems. Energy, 51, 323-329. doi:10.1016/j.energy.2012.12.043SPIN-PET, Via R. Piaggio, 32, 56025, Pontedera ,Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019].SILMA, Via Lombardia 97/00/101, Poggio a Caiano, Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019].AIMPLAS, Plastics Technology Centre, Paterna, Spain, https://www.aimplas.net/aimplas/, [Online; accessed 12-December-2019].CAUDAL - Extruline Systems, Puerto Lumbreras (Murcia), Spain, https://www.caudal.es/index.php/en/, [Online; accessed 12-December-2019].ASTM C 666: [Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing].ASTM C 531-85: Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes.EN 197-1: Cement - Part 1: composition, specifications and conformity criteria for common cements.EN 445: Grout for prestressing tendons - test methods.SS 137244: Concrete testing – hardened concrete – scaling at freezing.RISE Research Institutes of Sweden, Division Samhällsbyggnad – Infrastructure and Concrete Construction, Stockholm, Sweden, https://www.ri.se/sv, [Online; accessed 12-December-2019].UBeG GbR, Wetzlar, Germany, http://www.ubeg.de. [Online; accessed 12-December-2019]

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    MODULAR CUTTING TOOLS : Manual for students and masters of engineering specialities

    Get PDF
    MODULAR CUTTING TOOLS : Manual for students and masters of engineering specialities. Popok N.N., Gerasimov A.A. (Polotsk State University)Рассмотрены основные методы проектирования модульных инструментальных систем, конструкции модульных расточных режущих инструментов. Предназначено для студентов и магистрантов машиностроительных специальностей вузов
    corecore