327,910 research outputs found

    Domain architecture a design framework for system development and integration

    Get PDF
    The ever growing complexity of software systems has revealed many short-comings in existing software engineering practices and has raised interest in architecture-driven software development. A system\u27s architecture provides a model of the system that suppresses implementation detail, allowing the architects to concentrate on the analysis and decisions that are most critical to structuring the system to satisfy its requirements. Recently, interests of researchers and practi-tioners have shifted from individual system architectures to architectures for classes of software systems which provide more general, reusable solutions to the issues of overall system organization, interoperability, and allocation of services to system components. These generic architectures, such as product line architectures and domain architectures, promote reuse and interoperability, and create a basis for cost effective construction of high-quality systems. Our focus in this dissertation is on domain architectures as a means of development and integration of large-scale, domain-specific business software systems. Business imperatives, including flexibility, productivity, quality, and ability to adapt to changes, have fostered demands for flexible, coherent and enterprise--wide integrated business systems. The components of such systems, developed separately or purchased off the shelf, need to cohesively form an overall compu-tational environment for the business. The inevitable complexity of such integrated solutions and the highly-demanding process of their construction, management, and evolution support require new software engineering methodologies and tools. Domain architectures, prescribing the organization of software systems in a business domain, hold a promise to serve as a foundation on which such integrated business systems can be effectively constructed. To meet the above expectations, software architectures must be properly defined, represented, and applied, which requires suitable methodologies as well as process and tool support. Despite research efforts, however, state-of-the-art methods and tools for architecture-based system development do not yet meet the practical needs of system developers. The primary focus of this dissertation is on developing methods and tools to support domain architecture engineering and on leveraging architectures to achieve improved system development and integration in presence of increased complexity. In particular, the thesis explores issues related to the following three aspects of software technology: system complexity and software architectures as tools to alleviate complexity; domain architectures as frameworks for construction of large scale, flexible, enterprise-wide software systems; and architectural models and representation techniques as a basis for good” design. The thesis presents an archi-tectural taxonomy to help categorize and better understand architectural efforts. Furthermore, it clarifies the purpose of domain architectures and characterizes them in detail. To support the definition and application of domain architectures we have developed a method for domain architecture engineering and representation: GARM-ASPECT. GARM, the Generic Architecture Reference Model, underlying the method, is a system of modeling abstractions, relations and recommendations for building representations of reference software architectures. The model\u27s focus on reference and domain architectures determines its main distinguishing features: multiple views of architectural elements, a separate rule system to express constraints on architecture element types, and annotations such as “libraries” of patterns and “logs” of guidelines. ASPECT is an architecture description language based on GARM. It provides a normalized vocabulary for representing the skeleton of an architecture, its structural view, and establishes a framework for capturing archi-tectural constraints. It also allows extensions of the structural view with auxiliary information, such as behavior or quality specifications. In this respect, ASPECT provides facilities for establishing relationships among different specifications and gluing them together within an overall architectural description. This design allows flexibility and adaptability of the methodology to the specifics of a domain or a family of systems. ASPECT supports the representation of reference architectures as well as individual system architectures. The practical applicability of this method has been tested through a case study in an industrial setting. The approach to architecture engineering and representation, presented in this dissertation, is pragmatic and oriented towards software practitioners. GARM-ASPECT, as well as the taxonomy of architectures are of use to architects, system planners and system engineers. Beyond these practical contributions, this thesis also creates a more solid basis for expbring the applicability of architectural abstractions, the practicality of representation approaches, and the changes required to the devel-opment process in order to achieve the benefits from an architecture-driven software technology

    Applying Genetic Algorithms for Software Design and Project Planning

    Get PDF
    Today's software systems are growing in size and complexity. This means not only increased complexity in developing software systems, but also increase in the budget and completion time. This trend will lead to a situation where traditional manual software engineering practices are not sufficient to develop and evolve software systems in an economic and timely manner. Automated support can aid software engineers in reducing the time-to-market and improving the quality of the software. This thesis work explores the application of genetic algorithms for automated software architecture design and project planning.Software architecture design and project planning are non-trivial and challenging tasks. This thesis applies genetic algorithms to introduce automation into these tasks. The proposed genetic algorithm exploits reusable solutions, such as design patterns, architecture styles and application specific solutions for transforming a given initial rudimentary model into detailed design. The architectures are evaluated using multiple quality attributes, such as modifiability, efficiency and complexity. The fitness function encompasses the knowledge required for evaluating the architectures according to multiple quality attributes. The output from the genetic algorithm is an architecture proposal optimized with respect to multiple quality attributes.A genetic algorithm has also been devised for assigning work across teams located in distributed sites. The genetic algorithm takes information about the target system and the development organization as input and produces a set of work distribution and schedule plans optimized with respect to cost and duration objectives. The fitness function considers the differences in teams and barriers created by global dispersion into account in evaluating the work assignment. In addition, the genetic algorithm also takes solutions that ease or hamper distributed development into account in allocating the work. The genetic algorithm has been further extended with Pareto optimality to find a set of suitable work distribution proposals in a tradeoff between project cost and duration. In the experiments, an electronic home control system was developed by a set of different organizations structures. The results demonstrate that the proposed genetic algorithm can create reasonable work distribution proposals that conform to the general assumptions about the nature of cost and project completion time, i.e., cost of the project can be reduced at the expense of project completion time and vice-versa.In addition, variations have been made to the genetic algorithm approach to software architecture design. To accelerate the genetic algorithm towards multi-objective solutions, a quality farms approach has been developed. The approach uses the idea of cross breeding, where different individuals that are good with respect to one quality objective are combined for producing software architecture proposals that are good in multiple objectives. Also, to explore the suitability of other methods for software architecture synthesis, a constraint satisfaction approach has been developed. The approach models the software architecture design problem as a constraint satisfaction and optimization problem and solves it using constraint satisfaction techniques. This approach can provide rationale about why certain decisions are chosen in the proposed architecture proposals.Tool support for genetic algorithm-based architecture design and work planning approaches has been proposed. It facilitates an end user to give input, view and analyze the results of the developed genetic algorithm based approaches. The tool also provides support for semi-automated architecture design, where a human architect can guide the genetic algorithm towards optimal solutions. An empirical study has also been performed. It suggests that the quality of the proposals produced through semiautomated architecture design is roughly at the level of senior software engineering students. Furthermore, the project manager can interact with the tool and perform whatif analysis for choosing the suitable work distribution for the project at hand

    Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    Get PDF
    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models

    Towards Efficiency and Quality Assurance in Threat Analysis of Software Systems

    Get PDF
    Context: Security threats have been a growing concern in many organizations. Organizations developing software products strive to plan for security as soon as possible to mitigate such potential threats. In the design phase of the software development life-cycle, teams of experts routinely analyze the system architecture and design to nd potential security threats.Objective: The goal of this research is to improve on the performance of existing threat analysis techniques and support practitioners with automation and tool support. To understand the inner-workings of existing threat analysis methodologies we also conduct a systematic literature review examining 26 methodologies in detail. Our industrial partners conrm that existing techniques are labor intensive and do not provide quality guarantees about their outcomes.Method: We conducted empirical studies for building an in-depth understanding of existing techniques (Systematic Literature Review (SLR), controlled experiments). Further we rely on empirical case studies for ongoing validation of an attempted technique performance improvement.Findings: We have found that using a novel risk-rst approach can help reduce the labor while producing the same level of outcome quality in a shorter period of time. Further, we suggest that the key for a successful application of this approach is two fold. First, widening the analysis scope to end-to-end scenarios guides the analyst to focus on important assets. Second, appropriate model abstractions are required to manage the cognitive load of the human analysts. We have also found that reasoning about security in a formal setting requires extending the existing notations with security semantics. Further, minimal model extensions for doing so include security contracts for system nodes handling sensitive information. In such a setting, the analysis can be automated and can to some extent provide completeness guarantees.Future work: In the future, we plan to further study the analysis completeness guarantees. In particular, we plan to improve on the analysis automation and investigate complementary techniques for analysis completeness (namely informal pattern based techniques). We also plan to work on the disconnect between the planned and implemented security

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Modeling the object-oriented software process: OPEN and the unified process

    Get PDF
    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    What to Fix? Distinguishing between design and non-design rules in automated tools

    Full text link
    Technical debt---design shortcuts taken to optimize for delivery speed---is a critical part of long-term software costs. Consequently, automatically detecting technical debt is a high priority for software practitioners. Software quality tool vendors have responded to this need by positioning their tools to detect and manage technical debt. While these tools bundle a number of rules, it is hard for users to understand which rules identify design issues, as opposed to syntactic quality. This is important, since previous studies have revealed the most significant technical debt is related to design issues. Other research has focused on comparing these tools on open source projects, but these comparisons have not looked at whether the rules were relevant to design. We conducted an empirical study using a structured categorization approach, and manually classify 466 software quality rules from three industry tools---CAST, SonarQube, and NDepend. We found that most of these rules were easily labeled as either not design (55%) or design (19%). The remainder (26%) resulted in disagreements among the labelers. Our results are a first step in formalizing a definition of a design rule, in order to support automatic detection.Comment: Long version of accepted short paper at International Conference on Software Architecture 2017 (Gothenburg, SE
    • …
    corecore