25,741 research outputs found

    Sciunits: Reusable Research Objects

    Full text link
    Science is conducted collaboratively, often requiring knowledge sharing about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. In this paper, we present the sciunit, a reusable research object in which aggregated content is recomputable. We describe a Git-like client that efficiently creates, stores, and repeats sciunits. We show through analysis that sciunits repeat computational experiments with minimal storage and processing overhead. Finally, we provide an overview of sharing and reproducible cyberinfrastructure based on sciunits gaining adoption in the domain of geosciences

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Rationale in Development Chat Messages: An Exploratory Study

    Full text link
    Chat messages of development teams play an increasingly significant role in software development, having replaced emails in some cases. Chat messages contain information about discussed issues, considered alternatives and argumentation leading to the decisions made during software development. These elements, defined as rationale, are invaluable during software evolution for documenting and reusing development knowledge. Rationale is also essential for coping with changes and for effective maintenance of the software system. However, exploiting the rationale hidden in the chat messages is challenging due to the high volume of unstructured messages covering a wide range of topics. This work presents the results of an exploratory study examining the frequency of rationale in chat messages, the completeness of the available rationale and the potential of automatic techniques for rationale extraction. For this purpose, we apply content analysis and machine learning techniques on more than 8,700 chat messages from three software development projects. Our results show that chat messages are a rich source of rationale and that machine learning is a promising technique for detecting rationale and identifying different rationale elements.Comment: 11 pages, 6 figures. The 14th International Conference on Mining Software Repositories (MSR'17

    How to collect high quality segmentations: use human or computer drawn object boundaries?

    Full text link
    High quality segmentations must be captured consistently for applications such as biomedical image analysis. While human drawn segmentations are often collected because they provide a consistent level of quality, computer drawn segmentations can be collected efficiently and inexpensively. In this paper, we examine how to leverage available human and computer resources to consistently create high quality segmentations. We propose a quality control methodology. We demonstrate how to apply this approach using crowdsourced and domain expert votes for the "best" segmentation from a collection of human and computer drawn segmentations for 70 objects from a public dataset and 274 objects from biomedical images. We publicly share the library of biomedical images which includes 1,879 manual annotations of the boundaries of 274 objects. We found for the 344 objects that no single segmentation source was preferred and that human annotations are not always preferred over computer annotations. These results motivated us to examine the traditional approach to evaluate segmentation algorithms, which involves comparing the segmentations produced by the algorithms to manual annotations on benchmark datasets. We found that algorithm benchmarking results change when the comparison is made to consensus-voted segmentations. Our results led us to suggest a new segmentation approach that uses machine learning to predict the optimal segmentation source and a modified segmentation evaluation approach.National Science Foundation (IIS-0910908

    Heuristic usability evaluation on games: a modular approach

    Get PDF
    Heuristic evaluation is the preferred method to assess usability in games when experts conduct this evaluation. Many heuristics guidelines have been proposed attending to specificities of games but they only focus on specific subsets of games or platforms. In fact, to date the most used guideline to evaluate games usability is still Nielsen’s proposal, which is focused on generic software. As a result, most evaluations do not cover important aspects in games such as mobility, multiplayer interactions, enjoyability and playability, etc. To promote the usage of new heuristics adapted to different game and platform aspects we propose a modular approach based on the classification of existing game heuristics using metadata and a tool, MUSE (Meta-heUristics uSability Evaluation tool) for games, which allows a rebuild of heuristic guidelines based on metadata selection in order to obtain a customized list for every real evaluation case. The usage of these new rebuilt heuristic guidelines allows an explicit attendance to a wide range of usability aspects in games and a better detection of usability issues. We preliminarily evaluate MUSE with an analysis of two different games, using both the Nielsen’s heuristics and the customized heuristic lists generated by our tool.Unión Europea PI055-15/E0
    corecore