5,421 research outputs found

    Development of optimum clamp combinations for strap-down inertial measuring units with field replaceable sensors

    Get PDF
    Optimum clamp combinations for strap down inertial measuring units with field replaceable sensor

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    Reconfiguration and tool path planning of hexapod machine tools

    Get PDF
    Hexapod machine tools have the potential to achieve increased accuracy, speed, acceleration and rigidity over conventional machines, and are regarded by many researchers as the machine tools of the next generation. However, their small and complex workspace often limits the range of tasks they can perform, and their parallel structure raises many new issues preventing the direct use of conventional tool path planning methods. This dissertation presents an investigation of new reconfiguration and tool path planning methods for enhancing the ability of hexapods to adapt to workspace changes and assisting them in being integrated into the current manufacturing environments. A reconfiguration method which includes the consideration of foot-placement space (FPS) determination and placement parameter identification has been developed. Based on the desired workspace of a hexapod and the motion range of its leg modules, the FPS of a hexapod machine is defined and a construction method of the FPS is presented. An implementation algorithm for the construction method is developed. The equations for identifying the position and orientation of the base joints for the hexapod at a new location are formulated. For the position identification problem, an algorithm based on Dialytic Elimination is derived. Through examples, it is shown that the FPS determination method can provide feasible locations for the feet of the legs to realize the required workspace. It is also shown that these identification equations can be solved through a numerical approach or through Dialytic Elimination using symbolic manipulation. Three dissimilarities between hexapods and five-axis machines are identified and studied to enhance the basic understanding of tool path planning for hexapods. The first significant difference is the existence of an extra degree of freedom (γ angle). The second dissimilarity is that a hexapod has a widely varying inverse Jacobian over the workspace. This leads to the result that a hexapod usually has a nonlinear path when following a straight-line segment over two sampled poses. These factors indicate that the traditional path planning methods should not be used for hexapods without modification. A kinematics-based tool path planning method for hexapod machine tools is proposed to guide the part placement and the determination of γ angle. The algorithms to search for the feasible part locations and γ sets are presented. Three local planning methods for the γ angle are described. It is demonstrated that the method is feasible and is effective in enhancing the performance of the hexapod machine. As the nonlinear error is computationally expensive to evaluate in real time, the measurement of total leg length error is proposed. This measure is proved to be effective in controlling the nonlinear error

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed

    Geometrical Error Analysis and Correction in Robotic Grinding

    Get PDF
    The use of robots in industrial applications has been widespread in the manufacturing tasks such as welding, finishing, polishing and grinding. Most robotic grinding focus on the surface finish rather than accuracy and precision. Therefore, it is important to advance the technology of robotic machining so that more practical and competitive systems can be developed for components that have accuracy and precision requirement. This thesis focuses on improving the level of accuracy in robotic grinding which is a significant challenge in robotic applications because of the kinematic accuracy of the robot movement which is much more complex than normal CNC machine tools. Therefore, aiming to improve the robot accuracy, this work provides a novel method to define the geometrical error by using the cutting tool as a probe whilst using Acoustic Emission monitoring to modify robot commands and to detect surfaces of the workpiece. The work also includes an applicable mathematical model for compensating machining errors in relation to its geometrical position as well as applying an optimum grinding method to motivate the need of eliminating the residual error when performing abrasive grinding using the robot. The work has demonstrated an improved machining precision level from 50µm to 30µm which is controlled by considering the process influential variables, such as depth of cut, wheel speed, feed speed, dressing condition and system time constant. The recorded data and associated error reduction provide a significant evidence to support the viability of implementing a robotic system for various grinding applications, combining more quality and critical surface finishing practices, and an increased focus on the size and form of generated components. This method could provide more flexibility to help designers and manufacturers to control the final accuracy for machining a product using a robot system

    AUTOMATED FIVE-AXIS TOOL PATH GENERATION BASED ON DYNAMIC ANALYSIS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A knowledge-based approach for the extraction of machining features from solid models

    Get PDF
    Computer understanding of machining features such as holes and pockets is essential for bridging the communication gap between Computer Aided Design and Computer Aided Manufacture. This thesis describes a prototype machining feature extraction system that is implemented by integrating the VAX-OPS5 rule-based artificial intelligence environment with the PADL-2 solid modeller. Specification of original stock and finished part geometry within the solid modeller is followed by determination of the nominal surface boundary of the corresponding cavity volume model by means of Boolean subtraction and boundary evaluation. The boundary model of the cavity volume is managed by using winged-edge and frame-based data structures. Machining features are extracted using two methods : (1) automatic feature recognition, and (2) machine learning of features for subsequent recognition. [Continues.
    corecore