16,920 research outputs found

    Intra-operative high frequency ultrasound improves surgery of intramedullary cavernous malformations

    Get PDF
    Intra-operative ultrasound (ioUS) is a very useful tool in surgery of spinal lesions. Here we focus on modern ioUS to analyze its use for localisation, visualisation and resection control in intramedullary cavernous malformations (IMCM). A series of 35 consecutive intradural lesions were operated in our hospital in a time period of 24months using modern ioUS with a high frequency 7-15MHz transducer and a true real time 3D transducer (both Phillips iU 22 ultrasound system). Six of those cases were treated with the admitting diagnosis of a deep IMCM (two cervical, four thoracic lesions). IoUS images were performed before and after the IMCM resection. Pre-operative and early postoperative MRI images were performed in all patients. In all six IMCM cases a complete removal of the lesion was achieved microsurgically resulting in an improved neurological status of all patients. High frequency ioUS emerged to be a very useful tool during surgery for localization and visualization. Excellent resection control by ultrasound was possible in three cases. Minor resolution of true real time 3D ioUS decreases the actual advantage of simultaneous reconstruction in two planes. High frequency ioUS is the best choice for intra-operative imaging in deep IMCM to localize and to visualize the lesion and to plan the perfect surgical approach. Additionally, high frequency ioUS is suitable for intra-operative resection control of the lesion in selected IMCM case

    Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation

    Full text link
    We propose an attention mechanism for 3D medical image segmentation. The method, named segmentation-by-detection, is a cascade of a detection module followed by a segmentation module. The detection module enables a region of interest to come to attention and produces a set of object region candidates which are further used as an attention model. Rather than dealing with the entire volume, the segmentation module distills the information from the potential region. This scheme is an efficient solution for volumetric data as it reduces the influence of the surrounding noise which is especially important for medical data with low signal-to-noise ratio. Experimental results on 3D ultrasound data of the femoral head shows superiority of the proposed method when compared with a standard fully convolutional network like the U-Net

    Ultrasound localization microscopy to image and assess microvasculature in a rat kidney.

    Get PDF
    The recent development of ultrasound localization microscopy, where individual microbubbles (contrast agents) are detected and tracked within the vasculature, provides new opportunities for imaging the vasculature of entire organs with a spatial resolution below the diffraction limit. In stationary tissue, recent studies have demonstrated a theoretical resolution on the order of microns. In this work, single microbubbles were localized in vivo in a rat kidney using a dedicated high frame rate imaging sequence. Organ motion was tracked by assuming rigid motion (translation and rotation) and appropriate correction was applied. In contrast to previous work, coherence-based non-linear phase inversion processing was used to reject tissue echoes while maintaining echoes from very slowly moving microbubbles. Blood velocity in the small vessels was estimated by tracking microbubbles, demonstrating the potential of this technique to improve vascular characterization. Previous optical studies of microbubbles in vessels of approximately 20 microns have shown that expansion is constrained, suggesting that microbubble echoes would be difficult to detect in such regions. We therefore utilized the echoes from individual MBs as microscopic sensors of slow flow associated with such vessels and demonstrate that highly correlated, wideband echoes are detected from individual microbubbles in vessels with flow rates below 2 mm/s

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

    Full text link
    In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.Comment: submitted to IROS 201
    • …
    corecore