8,985 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Oersted Medal Lecture 2007: Interactive simulations for teaching physics: What works, what doesn't, and why

    Get PDF
    We give an overview of the Physics Educational Technology (PhET) project to research and develop web-based interactive simulations for teaching and learning physics. The design philosophy, simulation development and testing process, and range of available simulations are described. The highlights of PhET research on simulation design and effectiveness in a variety of educational settings are provided. This work has shown that a well-designed interactive simulation can be an engaging and effective tool for learning physics

    Semi Automated Partial Credit Grading of Programming Assignments

    Get PDF
    The grading of student programs is a time consuming process. As class sizes continue to grow, especially in entry level courses, manually grading student programs has become an even more daunting challenge. Increasing the difficulty of grading is the needs of graphical and interactive programs such as those used as part of the UNH Computer Science curriculum (and various textbooks). There are existing tools that support the grading of introductory programming assignments (TAME and Web-CAT). There are also frameworks that can be used to test student code (JUnit, Tester, and TestNG). While these programs and frameworks are helpful, they have little or no no support for programs that use real data structures or that have interactive or graphical features. In addition, the automated tests in all these tools provide only “all or nothing” evaluation. This is a significant limitation in many circumstances. Moreover, there is little or no support for dynamic alteration of grading criteria, which means that refactoring of test classes after deployment is not easily done. Our goal is to create a framework that can address these weaknesses. This framework needs to: 1. Support assignments that have interactive and graphical components. 2. Handle data structures in student programs such as lists, stacks, trees, and hash tables. 3. Be able to assign partial credit automatically when the instructor can predict errors in advance. 4. Provide additional answer clustering information to help graders identify and assign consistent partial credit for incorrect output that was not predefined. Most importantly, these tools, collectively called RPM (short for Rapid Program Management), should interface effectively with our current grading support framework without requiring large amounts of rewriting or refactoring of test code

    Automated Feedback for 'Fill in the Gap' Programming Exercises

    Get PDF
    Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE

    Software Verification and Graph Similarity for Automated Evaluation of Students' Assignments

    Get PDF
    In this paper we promote introducing software verification and control flow graph similarity measurement in automated evaluation of students' programs. We present a new grading framework that merges results obtained by combination of these two approaches with results obtained by automated testing, leading to improved quality and precision of automated grading. These two approaches are also useful in providing a comprehensible feedback that can help students to improve the quality of their programs We also present our corresponding tools that are publicly available and open source. The tools are based on LLVM low-level intermediate code representation, so they could be applied to a number of programming languages. Experimental evaluation of the proposed grading framework is performed on a corpus of university students' programs written in programming language C. Results of the experiments show that automatically generated grades are highly correlated with manually determined grades suggesting that the presented tools can find real-world applications in studying and grading

    SOCR: Statistics Online Computational Resource

    Get PDF
    The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student's intuition and enhance their learning.
    • 

    corecore