8,954 research outputs found

    Model-driven engineering techniques for the development of multi-agent systems

    Get PDF
    Model-driven engineering (MDE), implicitly based upon meta-model principles, is gaining more and more attention in software systems due to its inherent benefits. Its use normally improves the quality of the developed systems in terms of productivity, portability, inter-operability and maintenance. Therefore, its exploitation for the development of multi-agent systems (MAS) emerges in a natural way. In this paper, agent-oriented software development (AOSD) and MDE paradigms are fully integrated for the development of MAS. Meta-modeling techniques are explicitly used to speed up several phases of the process. The Prometheus methodology is used for the purpose of validating the proposal. The meta-object facility (MOF) architecture is used as a guideline for developing a MAS editor according to the language provided by Prometheus methodology. Firstly, an Ecore meta-model for Prometheus language is developed. Ecore is a powerful tool for designing model-driven architectures (MDA). Next, facilities provided by the Graphical Modeling Framework (GMF) are used to generate the graphical editor. It offers support to develop agent models conform to the meta-model specified. Afterwards, it is also described how an agent code generator can be developed. In this way, code is automatically generated using as input the model specified with the graphical editor. A case of study validates the method put in practice for the development of a multi-agent surveillance system

    Software traceability for multi-agent systems implemented using BDI architecture

    Get PDF
    The development of multi-agent software systems is considered a complex task due to (a) the large number and heterogeneity of documents generated during the development of these systems, (b) the lack of support for the whole development life-cycle by existing agent-oriented methodologies requiring the use of different methodologies, and (c) the possible incompleteness of the documents and models generated during the development of the systems. In order to alleviate the above problems, in this thesis, a traceability framework is described to support the development of multi-agent systems. The framework supports automatic generation of traceability relations and identification of missing elements (i.e., completeness checking) in the models created during the development life-cycle of multi-agent systems using the Belief-Desire-Intention (BDI) architecture. Traceability has been recognized as an important activity in the software development process. Traceability relations can guarantee and improve software quality and can help with several tasks such as the evolution of software systems, reuse of parts of the system, validation that a system meets its requirements, understanding of the rationale for certain design decisions, identification of common aspects of the system, and analysis of implications of changes in the system. The traceability framework presented in this thesis concentrates on multi-agent software systems developed using i* framework, Prometheus methodology, and JACK language. Here, a traceability reference model is presented for software artefacts generated when using i* framework, Prometheus methodology, and JACK language. Different types of relations between the artefacts are identified. The framework is based on a rule-based approach to support automatic identification of traceability relations and missing elements between the generated artefacts. Software models represented in XML were used to support the heterogeneity of models and tools used during the software development life-cycle. In the framework, the rules are specified in an extension of XQuery to support (i) representation of the consequence part of the rules, i.e. the actions to be taken when the conditions are satisfied, and (ii) extra functions to cover some of the traceability relations being proposed and completeness checking of the models. A prototype tool has been developed to illustrate and evaluate the work. The work has been evaluated in terms of recall and precision measurements in three different case studies. One small case study of an Automatic Teller Machine application, one medium case study of an Air Traffic Control Environment application, and one large case study of an Electronic Bookstore application.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Development of an autonomous distributed multiagent monitoring system for the automatic classification of end users

    Get PDF
    The purpose of this study is to investigate the feasibility of constructing a software Multi-Agent based monitoring and classification system and utilizing it to provide an automated and accurate classification for end users developing applications in the spreadsheet domain. Resulting in, is the creation of the Multi-Agent Classification System (MACS). The Microsoft‘s .NET Windows Service based agents were utilized to develop the Monitoring Agents of MACS. These agents function autonomously to provide continuous and periodic monitoring of spreadsheet workbooks by content. .NET Windows Communication Foundation (WCF) Services technology was used together with the Service Oriented Architecture (SOA) approach for the distribution of the agents over the World Wide Web in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus agent oriented design methodology and its accompanying Prometheus Design Tool (PDT) was employed for specifying and designing the agents of MACS, and Visual Studio.NET 2008 for creating the agency using visual C# programming language. MACS was evaluated against classification criteria from the literature with the support of using real-time data collected from a target group of excel spreadsheet developers over a network. The Monitoring Agents were configured to execute automatically, without any user intervention as windows service processes in the .NET web server application of the system. These distributed agents listen to and read the contents of excel spreadsheets development activities in terms of file and author properties, function and formulas used, and Visual Basic for Application (VBA) macro code constructs. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers. Oracle data mining classification algorithms: Naive Bayes, Adaptive Naive Bayes, Decision Trees, and Support Vector Machine were utilized to analyse the results from the data gathering process in order to automate the classification of excel spreadsheet developers. The accuracy of the predictions achieved by the models was compared. The results of the comparison showed that Naive Bayes classifier achieved the best results with accuracy of 0.978. Therefore, the MACS can be utilized to provide a Multi-Agent based automated classification solution to spreadsheet developers with a high degree of accuracy

    Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform

    Get PDF
    Software Engineering (SE) is an area that intends to build high-quality software in a systematic way. However, traditional software engineering techniques and methods do not support the demand for developing Multiagent Systems (MAS). Therefore a new subarea has been studied, called Agent Oriented Software Engineering (AOSE). The AOSE area proposes solutions to issues related to the development of agent oriented systems. There is still no standardization in this subarea, resulting in several methodologies. Another issue of this subarea is that there are very few tools that are able to automatically generate code. In this work we propose a tool to support the Prometheus AEOlus Methodology because it provides modelling artifacts to all MAS dimensions: agents, environment, interaction, and organization. The tool supports all Prometheus AEOlus artifacts and can automatically generated code to the agent and interaction dimensions in the AgentSpeak Language, which is the language used in the Jason Platform. We have done some validations with the proposed tool and a case study is presented

    Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform

    Get PDF
    Software Engineering (SE) is an area that intends to build high-quality software in a systematic way. However, traditional software engineering techniques and methods do not support the demand for developing Multiagent Systems (MAS). Therefore a new subarea has been studied, called Agent Oriented Software Engineering (AOSE). The AOSE area proposes solutions to specific issues related to the development of agent oriented systems. There are several methodologies to model MAS, however, until now, there is not a standard modelling language because they are very complex systems, and involve several different concepts. Another issue of this subarea is that there are very few tools that are able to automatically generate code, reducing its acceptance in the software development market. In this work, we propose a tool to support the Prometheus AEOlus Methodology, because it provides modelling artifacts to all MAS dimensions proposed by ~Demazeau: agents, environment, interactions and organization. The tool supports all Prometheus AEOlus artifacts and it can automatically generated code to the agent and interaction dimensions in the AgentSpeak(L) language, which is the language used in the Jason platform. We have done some validations with the proposed tool and a case study is presented. Our results indicate that our tool has full compatibility with the Jason platform, and it is able to automatic generate code in AgentSpeak(L). As future work, we intend to develop the integration of the artifacts with the JaCaMo framework, enabling a full integration between our tool and the Prometheus AEOlus methodology

    Adding debugging support to the Prometheus methodology

    Get PDF
    This paper describes a debugger which uses the design artifacts of the Prometheus agent-oriented software engineering methodology to alert the developer testing the system, that a specification has been violated. Detailed information is provided regarding the error which can help the developer in locating its source. Interaction protocols specified during design, are converted to executable Petri net representations. The system can then be monitored at run time to identify situations which do not conform to specified protocols. A process for monitoring aspects of plan selection is also described. The paper then describes the Prometheus Design Tool, developed to support the Prometheus methodology, and presents a vision of an integrated development environment providing full life cycle support for the development of agent systems. The initial part of the paper provides a detailed summary of the Prometheus methodology and the artifacts on which the debugger is based

    AUML protocols and code generation in the Prometheus design tool

    Get PDF
    Prometheus is an agent-oriented software engineering methodology. The Prometheus Design Tool (PDT) is a software tool that supports a designer who is using the Prometheus methodology. PDT has recently been extended with two significant new features: support for Agent UML interaction protocols, and code generation

    Managing healthcare workflows in a multi-agent system environment

    Get PDF
    Whilst Multi-Agent System (MAS) architectures appear to offer a more flexible model for designers and developers of complex, collaborative information systems, implementing real-world business processes that can be delegated to autonomous agents is still a relatively difficult task. Although a range of agent tools and toolkits exist, there still remains the need to move the creation of models nearer to code generation, in order that the development path be more rigorous and repeatable. In particular, it is essential that complex organisational process workflows are captured and expressed in a way that MAS can successfully interpret. Using a complex social care system as an exemplar, we describe a technique whereby a business process is captured, expressed, verified and specified in a suitable format for a healthcare MAS.</p

    Prometheus design tool

    Get PDF
    The Prometheus Design Tool (PDT) supports the structured design of intelligent agent systems. It supports the Prometheus methodology, but can also be used more generally. This paper outlines the tool and some of its many features
    • …
    corecore