116 research outputs found

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels

    Suprasegmental representations for the modeling of fundamental frequency in statistical parametric speech synthesis

    Get PDF
    Statistical parametric speech synthesis (SPSS) has seen improvements over recent years, especially in terms of intelligibility. Synthetic speech is often clear and understandable, but it can also be bland and monotonous. Proper generation of natural speech prosody is still a largely unsolved problem. This is relevant especially in the context of expressive audiobook speech synthesis, where speech is expected to be fluid and captivating. In general, prosody can be seen as a layer that is superimposed on the segmental (phone) sequence. Listeners can perceive the same melody or rhythm in different utterances, and the same segmental sequence can be uttered with a different prosodic layer to convey a different message. For this reason, prosody is commonly accepted to be inherently suprasegmental. It is governed by longer units within the utterance (e.g. syllables, words, phrases) and beyond the utterance (e.g. discourse). However, common techniques for the modeling of speech prosody - and speech in general - operate mainly on very short intervals, either at the state or frame level, in both hidden Markov model (HMM) and deep neural network (DNN) based speech synthesis. This thesis presents contributions supporting the claim that stronger representations of suprasegmental variation are essential for the natural generation of fundamental frequency for statistical parametric speech synthesis. We conceptualize the problem by dividing it into three sub-problems: (1) representations of acoustic signals, (2) representations of linguistic contexts, and (3) the mapping of one representation to another. The contributions of this thesis provide novel methods and insights relating to these three sub-problems. In terms of sub-problem 1, we propose a multi-level representation of f0 using the continuous wavelet transform and the discrete cosine transform, as well as a wavelet-based decomposition strategy that is linguistically and perceptually motivated. In terms of sub-problem 2, we investigate additional linguistic features such as text-derived word embeddings and syllable bag-of-phones and we propose a novel method for learning word vector representations based on acoustic counts. Finally, considering sub-problem 3, insights are given regarding hierarchical models such as parallel and cascaded deep neural networks

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Modeling of Polish Intonation for Statistical-Parametric Speech Synthesis

    Get PDF
    Wydział NeofilologiiBieżąca praca prezentuje próbę budowy neurobiologicznie umotywowanego modelu mapowań pomiędzy wysokopoziomowymi dyskretnymi kategoriami lingwistycznymi a ciągłym sygnałem częstotliwości podstawowej w polskiej neutralnej mowie czytanej, w oparciu o konwolucyjne sieci neuronowe. Po krótkim wprowadzeniu w problem badawczy w kontekście intonacji, syntezy mowy oraz luki pomiędzy fonetyką a fonologią, praca przedstawia opis uczenia modelu na podstawie specjalnego korpusu mowy oraz ewaluację naturalności konturu F0 generowanego przez wyuczony model za pomocą eksperymentów percepcyjnych typu ABX oraz MOS przy użyciu specjalnie w tym celu zbudowanego resyntezatora Neural Source Filter. Następnie, prezentowane są wyniki eksploracji fonologiczno-fonetycznych mapowań wyuczonych przez model. W tym celu wykorzystana została jedna z tzw. metod wyjaśniających dla sztucznej inteligencji – Layer-wise Relevance Propagation. W pracy przedstawione zostały wyniki powstałej na tej podstawie obszernej analizy ilościowej istotności dla konturu częstotliwości podstawowej każdej z 1297 specjalnie wygenerowanych lingwistycznych kategorii wejściowych modelu oraz ich wielorakich grupowań na różnorodnych poziomach abstrakcji. Pracę kończy dogłębna analiza oraz interpretacja uzyskanych wyników oraz rozważania na temat mocnych oraz słabych stron zastosowanych metod, a także lista proponowanych usprawnień.This work presents an attempt to build a neurobiologically inspired Convolutional Neural Network-based model of the mappings between discrete high-level linguistic categories into a continuous signal of fundamental frequency in Polish neutral read speech. After a brief introduction of the current research problem in the context of intonation, speech synthesis and the phonetic-phonology gap, the work goes on to describe the training of the model on a special speech corpus, and an evaluation of the naturalness of the F0 contour produced by the trained model through ABX and MOS perception experiments conducted with help of a specially built Neural Source Filter resynthesizer. Finally, an in-depth exploration of the phonology-to-phonetics mappings learned by the model is presented; the Layer-wise Relevance Propagation explainability method was used to perform an extensive quantitative analysis of the relevance of 1297 specially engineered linguistic input features and their groupings at various levels of abstraction for the specific contours of the fundamental frequency. The work ends with an in-depth interpretation of these results and a discussion of the advantages and disadvantages of the current method, and lists a number of potential future improvements.Badania przedstawione w pracy zostały cz˛e´sciowo zrealizowane w ramach grantu badawczego Harmonia nr UMO-2014/14/M/HS2/00631 przyznanego przez Narodowe Centrum Nauki

    Fundamental frequency modelling: an articulatory perspective with target approximation and deep learning

    Get PDF
    Current statistical parametric speech synthesis (SPSS) approaches typically aim at state/frame-level acoustic modelling, which leads to a problem of frame-by-frame independence. Besides that, whichever learning technique is used, hidden Markov model (HMM), deep neural network (DNN) or recurrent neural network (RNN), the fundamental idea is to set up a direct mapping from linguistic to acoustic features. Although progress is frequently reported, this idea is questionable in terms of biological plausibility. This thesis aims at addressing the above issues by integrating dynamic mechanisms of human speech production as a core component of F0 generation and thus developing a more human-like F0 modelling paradigm. By introducing an articulatory F0 generation model – target approximation (TA) – between text and speech that controls syllable-synchronised F0 generation, contextual F0 variations are processed in two separate yet integrated stages: linguistic to motor, and motor to acoustic. With the goal of demonstrating that human speech movement can be considered as a dynamic process of target approximation and that the TA model is a valid F0 generation model to be used at the motor-to-acoustic stage, a TA-based pitch control experiment is conducted first to simulate the subtle human behaviour of online compensation for pitch-shifted auditory feedback. Then, the TA parameters are collectively controlled by linguistic features via a deep or recurrent neural network (DNN/RNN) at the linguistic-to-motor stage. We trained the systems on a Mandarin Chinese dataset consisting of both statements and questions. The TA-based systems generally outperformed the baseline systems in both objective and subjective evaluations. Furthermore, the amount of required linguistic features were reduced first to syllable level only (with DNN) and then with all positional information removed (with RNN). Fewer linguistic features as input with limited number of TA parameters as output led to less training data and lower model complexity, which in turn led to more efficient training and faster synthesis

    Tagungsband der 12. Tagung Phonetik und Phonologie im deutschsprachigen Raum

    Get PDF

    Temporal processes involved in simultaneous reflection masking

    Get PDF
    corecore