390 research outputs found

    Tomographic determination of the spatial Distribution of Water Vapor using GNSS observations.

    Get PDF
    This paper focuses on investigating Global Navigation Satellite Systems (GNSS) observations as precipitation sensors and also analyse the contribution of the GNSS dense networks as an efficient tool for meteorological purposes based one Water Vapor Tomography. For that, case-studies are presented using data from BELEM and MANAUS dense network. For Water Vapor Tomograhy, a software package has been developed to reconstruct the GNSS water vapour spatial distribution. The obtained results indicate that GNSS can detect the variations in precipitation at different periods of the year and that dense GNSS networks allow us to generate images of the spatial and temporal distribution of water vapour. However, the influence of several parameters, such as number and distribution of receivers, grid sizes and initial values, has to be taken into account for the image reconstruction

    A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory CĂ©vennes-Vivarais (south-eastern France)

    Get PDF
    International audienceThe Mediterranean hydrometeorological observatory CĂ©vennes-Vivarais (OHM-CV) coordinates hydrometeorological observations (radars, rain gauges, water level stations) on a regional scale in southeastern France. In the framework of OHM-CV, temporary GPS measurements have been carried out for 2 months in autumn 2002, when the heaviest rainfall are expected. These measurements increase the spatial density of the existing permanent GPS network, by adding three more receivers between the Mediterranean coast and the CĂ©vennes-Vivarais range to monitor maritime source of water vapour flow feeding the precipitating systems over the CĂ©vennes-Vivarais region. In addition, a local network of 18 receivers covered an area of 30 by 30 km within the field of view of the meteorological radar. These regional and local networks of permanent and temporary stations are used to monitor the precipitable water vapour (PWV) with high temporal resolution (15 min). Also, the dense local network provided data which have been inverted using tomographic techniques to obtain the 3-D field of tropospheric water vapour content. This study presents methodological tests for retrieving GPS tropospheric observations from dense networks, with the aim of assessing the uncertainties of GPS retrievals. Using optimal tropospheric GPS retrieval methods, high resolution measurements of PWV on a local scale (a few kilometres) are discussed for rain events. Finally, the results of 3-D fields of water vapour densities from GPS tomography are analysed with respect to precipitation fields derived from a meteorological radar, showing a good correlation between precipitation and water vapour depletion areas

    4D tropospheric tomography using GPS slant wet delays

    Get PDF

    Preconditions to ground based GPS water vapour tomography

    Get PDF
    The GPS water vapour tomography is a new technique which provides spatially resolved water vapour distributions in the atmosphere under all weather conditions. This work investigates the information contained in a given set of GPS signals as a precondition to an optimal tomographic reconstruction. The spatial distribution of the geometric intersection points between different ray paths is used to estimate the information density. Different distributions of intersection points obtained from hypothetical GPS networks with varying densities of GPS stations are compared with respect to the horizontal and vertical resolution of a subsequent tomographic reconstruction. As a result some minimum requirements for continuously operating extensive GPS networks for meteorological applications are given

    4D tropospheric tomography using GPS slant wet delays

    No full text
    International audienceTomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4Ă—4Ă—40 voxel grid on a region of 400 km2 and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space

    Atmospheric anomalies over Mt.Etna using GPS signal delays and tomography of radio wave velocities

    Get PDF
    Due to the prominent topography of Mt. Etna, the use of satellite geodetic techniques may significantly suffer from atmospheric heterogeneities. This problem mainly affects the DInSAR technique. To overcome these drawbacks the present study attempts to make headway in measuring and interpreting atmospheric anomalies. We used the GAMIT software to obtain the ZTD (Zenith Total Delay) values for the GPS sessions performed on 1996-97, during ERS-2 passes at Mt. Etna. GAMIT software also allows to characterize the statistical behaviour of the tropospheric effects, by using residuals for each station-satellite pair, and to locate the atmospheric anomalies, present mostly at low altitudes. The attempt at using these results to produce a tomography of radio waves velocity of the troposphere suggests that the number of GPS stations used to investigate atmosphere is a critical point in such a study. The three stations are too few to invert anomalies eventually existing in the lower atmosphere. This result is a good starting point for better direct future study to verify the applicability of this tomographic technique to a geodetic network with a higher number of stations, with the aim of characterizing the lower atmosphere of Mt. Etna for a more accurate monitoring of ground deformations

    4D GPS water vapor tomography: new parameterized approaches

    Get PDF
    Water vapor is a key variable in numerical weather prediction, as it plays an important role in atmospheric processes. Nonetheless, the distribution of water vapor in the atmosphere is observed with a coarse resolution in time and space compared to the resolution of numerical weather models. GPS water vapor tomography is one of the promising methods to improve the resolution of water vapor measurements. This paper presents new parameterized approaches for the determination of water vapor distribution in the troposphere by GPS. We present the methods and give first results validating the approaches. The parameterization of voxels (volumetric pixels) by trilinear and spline functions in ellipsoidal coordinates are introduced in this study. The evolution in time of the refractivity field is modeled by a Kalman filter with a temporal resolution of 30 s, which corresponds to the available GPS-data rate. The algorithms are tested with simulated and with real data from more than 40 permanent GPS receiver stations in Switzerland and adjoining regions covering alpine areas. The investigations show the potential of the new parameterized approaches to yield superior results compared to the non parametric classical one. The accuracy of the tomographic result is quantified by the inter-quartile range (IQR), which is decreased by 10-20% with the new approaches. Further, parameterized voxel solutions have a substantially smaller maximal error than the non parameterized ones. Simulations show a limited ability to resolve vertical structures above the top station of the network with GPS tomograph
    • …
    corecore