23 research outputs found

    GIST: an interactive, GPU-based level set segmentation tool for 3D medical images

    Get PDF
    technical reportWhile level sets have demonstrated a great potential for 3D medical image segmentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper describes a new tool for 3D segmentation that addresses these problems by computing level-set surface models at interactive rates. This tool employs two important, novel technologies. First is the mapping of a 3D level-set solver onto a commodity graphics card (GPU). This mapping relies on a novel mechanism for GPU memory management. The interactive rates level-set PDE solver give the user immediate feedback on the parameter settings, and thus users can tune free parameters and control the shape of the model in real time. The second technology is the use of region-based speed functions, which allow a user to quickly and intuitively specify the behavior of the deformable model. We have found that the combination of these interactive tools enables users to produce good, reliable segmentations. To support this observation, this paper presents qualitative results from several different datasets as well as a quantitative evaluation from a study of brain tumor segmentations

    Evaluation of Interpolation and Registration Techniques in Magnetic Resonance Image for Orthogonal Plane Super Resolution Reconstruction

    Get PDF
    Super resolution reconstruction (SRR) combines several perspectives of an image (typically low resolution) in order to reconstruct a more complete and comprehensive (higher resolution) image. The aim is to use this concept on magnetic resonance imaging (MRI) data, for which the standard is to scan in several-plane orientation in a 2D fashion. As a result, clinical MRI, functional MRI (FMRI), diffusion weighted imaging (DWI)/diffusion tensor imaging (DTI), and MR angiography (MRA) tend to have high in- plane resolution but low resolution in the slice-select direction. By combining the 2 scans of the orthogonal plane, new 3D images can be reconstructed. This thesis addresses the principal problem of image quality and considers a novel SRR technique that uses the original information from 3 MRI plane orientations in order to enhance the resolution based on prior knowledge of scanning protocol as it relates to voxel resolution. The procedure for validating the MRI data algorithm is executed using MRI dataset of a human brain. The mean squared error (MSE) and peak signal-to-noise ratio (PSNR) were computed for quantitative assessment, whereas the qualitative assessment was performed by visually comparing the SR images to the original HR

    Noise and error propagation in diffusion tensor imaging

    Get PDF
    Diffusion Tensor Imaging (DTI) is the in vivo visualization and analysis of white matter fiber tracts by measuring the anisotropy of water molecule diffusion in the brain tissue. DTI has been increasingly used in clinical imaging. Diffusion weighted images are affected by noise from the human subject and the MRI scanner. This thesis studies the error propagation in the calculation of the DTI invariant anisotropy, mainly the Fractional Anisotropy (FA) using four methods and their comparison in terms of error, filtering and computational efficiency using simulated and human brain data. These methods were Diffusion Tensor, Diffusion Ellipsoid, Hasan and Platonic Variance. The results showed similar trends across the simulated and real data sets. Of the four methods used to calculate FA, the Hasan method without diffusion tensor yielded best computational efficiency, but poor noise robustness, whereas the Platonic Variance method was more robust to noise and provided good computational efficiency

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Liver segmentation using 3D CT scans.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2018.Abstract available in PDF file

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions

    MC 2019 Berlin Microscopy Conference - Abstracts

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2019", die vom 01. bis 05.09.2019, in Berlin stattfand

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research
    corecore