32 research outputs found

    A feasibility study about the use of vector tomography for the reconstruction of the coronal magnetic field

    Get PDF
    Der Energiehaushalt der Sonnenkorona wird dominiert durch die Energie des koronalen Magnetfeldes. Es existiert allerdings noch keine Methode den Magnetfeldvektor in der Sonnenkorona direkt zu messen. Der longitudionale Zeeman und Hanleeffekt gibt uns, für magnetisch empfindliche Linienstrahlung, einige indirekte Informationen über das koronale Magnetfeld. Im Rahmen dieser Doktorarbeit untersuchen wir ob eine tomographische Inversion dieser Messungen uns ermöglicht das Magnetfeld in der gesamten Sonnenkorona zu rekonstruieren. Das Inversionsproblem ist schlecht konditioniert. Wir verbessern die Konditionierung, indem wir zusätzlich ablaB=0abla\cdot\vec{B}=0 als Regularisierungsterm benutzen. Hierzu benötigen wir zusätzlich Magnetogramme auf der Sonnenoberfläche als Randbedingung. Wir zeigen, dass es mit Hilfe dieser Bedingungen möglich ist, sowohl die Stärke als auch die Richtung des Magnetfeldes aus den oben erwähnten Messungen zu rekonstruieren. Das rekonstruierte Feld enthält Details, die mit herkömmlichen Extrapolationsmethoden von der Sonnenoberfläche aus nicht erreicht werden. Wir haben einen Inversionscode entwickelt, der auf den oben genannten Effekten beruht.The magnetic field contains the dominant energy per unit volume in the solar corona and therefore plays an important role in most coronal phenomena. But until now, no direct measurement of the magnetic field vector distribution in the corona could be made. Some indirect information about the coronal magnetic field can be obtained using the longitudinal Zeeman or Hanle effects on emissions at magnetically sensitive coronal transition lines. In this thesis, we investigate whether a tomographic reconstruction based on these observations allow us to obtain a reliable model of the vector magnetic field in the whole solar corona. The inversion problem is strongly ill-posed. To improve the condition of the inversion problem we use the fact that the magnetic field has to satisfy ablaB=0abla\cdot\vec{B}=0 as an additional regularization constraint. The use of this constraint may require additional solar surface magnetogram data as boundary condition. With the help of this constraint, we show that it is possible to reconstruct both the strength and direction of the magnetic field from the mentioned above observations. The reconstructed field contains details, which cannot be obtained with a traditional extrapolation of the photospheric surface field measurements. The inversion code based on the effects mentioned above has been developed

    Frequency Domain Ultrasound Waveform Tomography Breast Imaging

    Get PDF
    Ultrasound tomography is an emerging modality for imaging breast tissue for the detection of disease. Using the principles of full waveform inversion, high-resolution quantitative sound speed and attenuation maps of the breast can be created. In this thesis, we introduce some basic principles of imaging breast disease and the formalism of sound wave propagation. We present numerical methods to model acoustic wave propagation as well methods to solve the corresponding inverse problem. Numerical simulations of sound speed and attenuation reconstructions are used to assess the efficacy of the algorithm. A careful review of the preprocessing techniques needed for the successful inversion of acoustic data is presented. Ex vivo and in vivo sound speed reconstructions highlight the significant improvements that are made upon commonly used travel time sound speed reconstruction methods. Note that we do not present ex vivo or in vivo attenuation reconstructions in this thesis. For the sound speed images, the higher resolution and contrast of the waveform method will hopefully allow a radiologist to make a more informed diagnosis of breast disease. A comparison of full waveform sound speed imaging to MRI shows a great deal of concordant findings. Lastly, we give examples of the use of full waveform inversion sound speed imaging in a clinical setting

    Doctor of Philosophy

    Get PDF
    dissertationX-ray computed tomography (CT) is a widely popular medical imaging technique that allows for viewing of in vivo anatomy and physiology. In order to produce high-quality images and provide reliable treatment, CT imaging requires the precise knowledge of t

    The equivalent wavefield concept in multichannel transient electromagnetic surveying.

    Get PDF

    Making the most of imaging and spectroscopy in TEM: computer simulations for materials science problems

    Get PDF
    [eng] Transmission Electron Microscopy (TEM), since its first implementation by Ernst August Friedrich Ruska and Max Knoll in 1931, has been an essential technique in the nanoscience and nanotechnology field. In the beginning, the real resolution was just a small fraction of the potential resolution expected by the fact of using electrons as a “light” source. The wavelength of the electrons accelerated at hundreds of electronvolts would involve a subatomic resolution; however, all the aberrations related to electromagnetic lenses caused a dramatic decrease. In addition, the energy resolution was highly affected by the chromatic aberration of the electron beam. Nowadays, all these initial problems have been solved by the development of the image aberration correctors and the monochromators. Since atomic resolution together with 10 meV energy resolution are a reality for researchers, new and higher horizons have been set for the transmission electron microscopy, such as orbital imaging, phonon imaging, or real time atom monitoring amongst others. TEM could be described at its most fundamental as the analysis of the result of impacting electrons with a specific compound or structure. From, this impact different data can be obtained which can be rapidly classified between imaging and spectroscopy. With the recent increases in energy and spatial resolution, a huge amount of information can be directly extracted from very large experimental datasets; however, for a deeper understanding, most of the times the support from theoretical calculations is also needed. Solid state physics with quantum considerations can contribute to an accurate description of the studied systems. Whereas in the past, materials science, solid state physics, quantum mechanics and chemistry were disciplines with a huge separation between them, nowadays they merge in the field of nanoscience and nanotechnology. When the object size is reduced to the nanoscale the quantum effects cannot be neglected anymore, any change on the synthesis can in turn change the structure which plays an essential role on the compound properties. Thus, modelling has become an essential step in the materials synthesis and characterization. The knowledge of the structure allows to compute the interaction of the electrons with any well described crystalline structure and generate images and spectra comparable with experimental data, but not just as a check, but to gain deeper insight. The interaction of the electrons with matter must be computed by solving the Schrödinger equation of the electrons interacting with the sample. The sample, the system, can be considered as a periodic potential. Imaging, measuring, modelling and manipulating matter are the basis of the promising field of nanoscience, and they can be carried out using a TEM, with the continuous support of theoretical calculations to obtain the most. The present thesis uses three main types of calculations to interpret TEM data: atomic simulations applied to imaging, Boundary Element Method (BEM) based calculations for surface plasmon distributions and Density Functional Theory (DFT) for EELS analysis. Even if they will be presented separately, they are not independent; the essence is always the same but depending on the desired results different considerations are needed. The materials science problems solved through these kinds of simulations presented in the thesis are the analysis of CuPtB ordering effects in GaInP, the influence of oxygen vacancies in the EELS of Bi2O3, the consequences of the Fe3O4 Verwey transition in its electronic structure and how it is observed in EELS and, finally, the surface plasmon distribution in gold-nanodomes as a function of the dome shape. To conclude, the simulations have been presented as an essential tool to complement TEM studies to link the experimental results with the most fundamental aspects which are determined by the structure of the studied materials.[cat] Aquesta tesi doctoral s'ha centrat en la realització de càlculs teòrics que permetin comprendre i extreure la major quantitat d'informació possible de les dades experimentals de microscòpia de transmissió d’electrons (TEM), i de les tècniques espectroscòpiques relacionades, concretament, l'espectroscòpia de pèrdua d’energia dels electrons (EELS). S’hi utilitzen tres tipus principals de càlculs per interpretar les dades del TEM: simulacions atòmiques aplicades a l'obtenció d'imatges, càlculs basats en el mètode d'elements de contorn (BEM) per a les distribucions de plasmons superficials i la teoria del funcional de la densitat (DFT) per a l'anàlisi d’EELS. Tot i que es presentin per separat, no són independents; l'essència sempre és la mateixa, però depenent dels resultats desitjats es necessiten diferents consideracions. En aquest sentit, primerament s'han presentat les bases físiques de diferents mètodes de simulació: simulació multislice per calcular imatges de contrast de número atòmic i de contrast de fase, càlculs (DFT) per calcular dades EELS de baixa pèrdua i de pèrdues profundes i, simulacions basades en BEM per a plasmons de superfície. Un cop presentades les bases, s’han resolt problemes de la ciència dels materials mitjançant aquest tipus de simulacions: l'anàlisi dels efectes d'ordenació del CuPtB al GaInP, la influència de les vacants d'oxigen a l'EELS del Bi2O3, les conseqüències de la transició Fe3O4 Verwey en la seva estructura electrònica i com s'observa a l'EELS i, finalment, la distribució de plasmons superficials als nanodoms d'or en funció de la forma de la cúpula. En resum, al llarg la tesi doctoral les simulacions han demostrat ser una eina essencial per complementar els estudis de TEM, per vincular els resultats experimentals amb els aspectes més fonamentals determinats per l'estructura dels materials estudiats

    Impedance Sensors for Fast Multiphase Flow Measurement and Imaging

    Get PDF
    Multiphase flow denotes the simultaneous flow of two or more physically distinct and immiscible substances and it can be widely found in several engineering applications, for instance, power generation, chemical engineering and crude oil extraction and processing. In many of those applications, multiphase flows determine safety and efficiency aspects of processes and plants where they occur. Therefore, the measurement and imaging of multiphase flows has received much attention in recent years, largely driven by a need of many industry branches to accurately quantify, predict and control the flow of multiphase mixtures. Moreover, multiphase flow measurements also form the basis in which models and simulations can be developed and validated. In this work, the use of electrical impedance techniques for multiphase flow measurement has been investigated. Three different impedance sensor systems to quantify and monitor multiphase flows have been developed, implemented and metrologically evaluated. The first one is a complex permittivity needle probe which can detect the phases of a multiphase flow at its probe tip by simultaneous measurement of the electrical conductivity and permittivity at up to 20 kHz repetition rate. Two-dimensional images of the phase distribution in pipe cross section can be obtained by the newly developed capacitance wire-mesh sensor. The sensor is able to discriminate fluids with different relative permittivity (dielectric constant) values in a multiphase flow and achieves frame frequencies of up to 10 000 frames per second. The third sensor introduced in this thesis is a planar array sensor which can be employed to visualize fluid distributions along the surface of objects and near-wall flows. The planar sensor can be mounted onto the wall of pipes or vessels and thus has a minimal influence on the flow. It can be operated by a conductivity-based as well as permittivity-based electronics at imaging speeds of up to 10 000 frames/s. All three sensor modalities have been employed in different flow applications which are discussed in this thesis. The main contribution of this research work to the field of multiphase flow measurement technology is therefore the development, characterization and application of new sensors based on electrical impedance measurement. All sensors present high-speed capability and two of them allow for imaging phase fraction distributions. The sensors are furthermore very robust and can thus easily be employed in a number of multiphase flow applications in research and industry
    corecore