633 research outputs found

    Dynamic Congestion and Tolls with Mobile Source Emission

    Get PDF
    This paper proposes a dynamic congestion pricing model that takes into account mobile source emissions. We consider a tollable vehicular network where the users selfishly minimize their own travel costs, including travel time, early/late arrival penalties and tolls. On top of that, we assume that part of the network can be tolled by a central authority, whose objective is to minimize both total travel costs of road users and total emission on a network-wide level. The model is formulated as a mathematical program with equilibrium constraints (MPEC) problem and then reformulated as a mathematical program with complementarity constraints (MPCC). The MPCC is solved using a quadratic penalty-based gradient projection algorithm. A numerical study on a toy network illustrates the effectiveness of the tolling strategy and reveals a Braess-type paradox in the context of traffic-derived emission.Comment: 23 pages, 9 figures, 5 tables. Current version to appear in the Proceedings of the 20th International Symposium on Transportation and Traffic Theory, 2013, the Netherland

    Second best toll and capacity optimisation in network: solution algorithm and policy implications

    Get PDF
    This paper looks at the first and second-best jointly optimal toll and road capacity investment problems from both policy and technical oriented perspectives. On the technical side, the paper investigates the applicability of the constraint cutting algorithm for solving the second-best problem under elastic demand which is formulated as a bilevel programming problem. The approach is shown to perform well despite several problems encountered by our previous work in Shepherd and Sumalee (2004). The paper then applies the algorithm to a small sized network to investigate the policy implications of the first and second-best cases. This policy analysis demonstrates that the joint first best structure is to invest in the most direct routes while reducing capacities elsewhere. Whilst unrealistic this acts as a useful benchmark. The results also show that certain second best policies can achieve a high proportion of the first best benefits while in general generating a revenue surplus. We also show that unless costs of capacity are known to be low then second best tolls will be affected and so should be analysed in conjunction with investments in the network

    Different Policy Objectives of the Road Pricing Problem ā€“ a Game Theory Approach

    Get PDF
    Using game theory we investigate a new approach to formulate and solve optimal tolls with a focus on different policy objectives of the road authority. The aim is to gain more insight into determining optimal tolls as well as into the behavior of users after tolls have been imposed on the network. The problem of determining optimal tolls is stated and defined using utility maximization theory, including elastic demand on the travelersā€™ side and different objectives for the road authority. Game theory notions are adopted regarding different games and players, rules and outcomes of the games played between travelers on the one hand and the road authority on the other. Different game concepts (Cournot, Stackelberg and monopoly game) are mathematically formulated and the relationship between players, their payoff functions and rules of the games are defined for very simplistic cases. The games are solved for different scenarios and different objectives for the road authority, using the Nash equilibrium concept. Using the Stackelberg game concept as being most realistic for road pricing, a few experiments are presented illustrating the optimal toll design problem subject to different pricing policies considering different objectives of the road authority. Results show different outcomes both in terms of optimal tolls as well as in payoffs for travelers. There exist multiple optimal solutions and objective function may have a non- continuous shape. The main contribution is the two-level separation between of the users from the road authority in terms of their objectives and influences.

    Evaluation Of Lane Use Management Strategies

    Get PDF
    The limited funding available for roadway capacity expansion and the growing funding gap, in conjunction with the increasing congestion, creates a critical need for innovative lane use management options. Various cost-effective lane use management strategies have been implemented in the United States and worldwide to address these challenges. However, these strategies have their own costs, operational characteristics, and additional requirements for field deployment. Hence, there is a need for systematic methodologies to evaluate lane use management strategies. In this thesis, a systematic simulation-based methodology is proposed to evaluate lane use management strategies. It involves identifying traffic corridors that are suitable for lane use management strategies, and analyzing the strategies in terms of performance and financial feasibility. The state of Indiana is used as a case study for this purpose, and a set of traffic corridors is identified. From among them, a 10-mile stretch of the I-65 corridor south of downtown Indianapolis is selected as the study corridor using traffic analysis. The demand volumes for the study area are determined using subarea analysis. The performance of the traffic corridor is evaluated using a microsimulation-based analysis for alleviating congestion using three strategies: reversible lanes, high occupancy vehicle (HOV) lanes and ramp metering. Furthermore, an economic evaluation of these strategies is performed to determine the financial feasibility of their implementation. Results from the simulation based analysis indicate that the reversible lanes and ramp metering strategies improve traffic conditions on the freeway in the major flow direction. Implementation of the HOV lane strategy results in improved traffic flow conditions on the HOV lanes but aggravated congestion on the general purpose lanes. The HOV lane strategy is found to be economically infeasible due to low HOV volume on these lanes. The reversible lane and ramp metering strategies are found to be economically feasible with positive net present values (NPV), with the NPV for the reversible lane strategy being the highest. While reversible lanes, HOV lanes and ramp metering strategies are effective in mitigating congestion by optimizing lane usage, they do not generate additional revenue required to reduce the funding deficit. Inadequate funds and worsening congestion have prompted federal, state and local planning agencies to explore and implement various congestion pricing strategies. In this context, the high occupancy toll (HOT) lanes strategy is explored here. Equity concerns associated with pricing schemes in transportation systems have garnered increased attention in the recent past. Income inequity potentially exists under the HOT strategy whereby higher-income travelers may reap the benefits of HOT lane facilities. An income-based multi-toll pricing approach is proposed for a single HOT lane facility in a network to simultaneously maximize the toll revenue and address the income equity concern, while ensuring a minimum level-of-service on the HOT lanes and that the toll prices do not exceed thresholds specified by a regulatory entity. The problem is modeled as a bi-level optimization formulation. The upper level model seeks to maximize revenue for the tolling authority subject to pre-specified upper bounds on toll prices. The lower level model solves for the stochastic user equilibrium solution based on commuters\u27 objective of minimizing their generalized travel costs. Due to the computational intractability of the bi-level formulation, an approximate agent-based solution approach is used to determine the toll prices by considering the tolling authority and commuters as agents. Results from numerical experiments indicate that a multi-toll pricing scheme is more equitable and can yield higher revenues compared to a single toll price scheme across all travelers

    Road network equilibrium approaches to environmental sustainability

    Get PDF
    Environmental sustainability is closely related to transportation, especially to the road network, because vehicle emissions and noise damage the environment and have adverse effects on human health. It is, therefore, important to take their effect into account when designing and managing road networks. Road network equilibrium approaches have been used to estimate this impact and to design and manage road networks accordingly. However, no comprehensive review has summarized the applications of these approaches to the design and management of road networks that explicitly address environmental concerns. More importantly, it is necessary to identify this gap in the literature so that future research can improve the existing methodologies. Hence, this paper summarizes these applications and identifies potential future research directions in terms of theories, modelling approaches, algorithms, analyses, and applications.postprin

    Editorial: Optimisation methods of road pricing

    Get PDF
    Toll charges are classified into congestion tolls (congestion pricing) and road tolls (private pricing) respectively, according to the purpose of pricing. Congestion pricing is used to mitigate network congestion by shifting traffic flow from peak periods to off-peak periods, from congested routes to less congested routes, or from private cars to public transport. Private toll pricing is used to recoup construction or maintenance costs of road links, when they are built fully or partially on private investment. This special issue reports some recent developments in road pricing. Three papers investigate congestion pricing, and one paper deals with toll adjustment for road franchising. The optimisation models and theoretical findings might be useful and meaningful for future research on road pricing

    A dynamic feedback-control toll pricing methodology : a case study on Interstate 95 manged lanes

    Get PDF
    Recently, congestion pricing emerged as a cost-effective and efficient strategy to mitigate the congestion problem on freeways. This study develops a feedback-control based dynamic toll approach to formulate and solve for optimal tolls. The study compares the performance of the proposed methodology to that of the current strategy deployed on Interstate 95 express lanes. Two objectives are studied: one is to maximize the toll revenue while maintaining a minimum level of service on the managed lanes and the other is to maximize both revenue and throughput on the managed lanes while keeping a minimum level of service. The impact of driversā€™ value of time based on their income level is also examined. Three values ranging from 60% to 120% of the mean hourly income are used. The results show that for high demand, an increase in the probability of choosing managed lanes is obvious, with the highest increase observed for the case of 120%. Besides, the effects of distributions of driversā€™ value of time among drivers are addressed. Two numerical examples are provided to explain how the proposed strategy works under three driver groups and forty-four driver groups, and an external module is developed to execute the strategy in real time during VISSIM runtime. When compared to the currently adopted toll pricing strategy on I-95, the proposed strategy with both objectives produce steadier toll rate profiles, while keeping the speeds at 45 mph or more. The objective of revenue maximization produces larger toll revenue and objective of both revenue and throughput maximization produces higher throughput on the managed lanes

    Minimizing CO2e emissions by setting a road toll

    Get PDF
    The main purpose of this paper is to develop a bi-level pricing model to minimize the CO2e emissions and the total travel time in a small road network. In the lower level of the model, it is assumed that users of the road network find a dynamic user equilibrium which minimises the total costs of those in the system. For the higher level of the model, different road toll strategies are applied in order to minimize the CO2e emissions. The model has been applied to an illustrative example. It shows the effects on traffic flows, revenues, total time and CO2e emissions for different numbers of servers collecting tolls and different pricing strategies over a morning peak traffic period. The results show that the CO2e emissions produced can be significantly affected by the number of servers and the type of toll strategy employed. The model is also used to find the best toll strategy when there is a constraint on the revenue that is required to be raised from the toll and how this affects the emissions produced. Further runs compare strategies to minimize the CO2e emissions with those that minimize total travel time in the road system. In the illustrative example, the results for minimizing CO2e emissions are shown to be similar to the results obtained from minimizing the total travel time
    • ā€¦
    corecore