137 research outputs found

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Current Legislative and Regulatory lssues What to Do When Both Sides Are Right: RIAA and Academia Advertorial: Considerations for Enterprise Emergency Notification Systems Advertorial: Telephony and the Creation of the Continuous Campus Key Findings from the ACUTA 2007 Trends Survey Trolling for Security Breaches and Digital Forensic Evidence Campuses Taking a Hard Look at Emergency Response Plans Roles and Regulations-Taking Back Control of the Network Bill D. Morris Award ACUTA Ruth A. Michalecki Award lnstitutional Excellence Award Interview President\u27s Message From the Executive Directo

    Strategies to Secure a Voice Over Internet Protocol Telephone System

    Get PDF
    Voice over internet protocol (VoIP) provides cost-effective phone service over a broadband internet connection rather than analog telephone services. While VoIP is a fast-growing technology, there are issues with intercepting and misusing transmissions, which are security concerns within telecommunication organizations and for customers. Grounded in the routine activity theory, the purpose of this multiple case study was to explore strategies information technology (IT) security managers used to secure VoIP telephone systems in telecommunication organizations. The participants consisted of nine IT security managers from three telecommunication organizations in New York who possessed the knowledge and expertise to secure a VoIP telephone system. The data were collected using semi structured interviews, note taking, and one document from one organization. Four themes emerged from the thematic analysis: best practices for VoIP security, using a secure VoIP provider, VoIP security recommendations, and awareness of future security concerns. A key recommendation for IT security professionals is to ensure encryption to secure a VoIP telephone system. The implications for positive social change include the potential for IT security managers and telecommunication organizations to reduce data breaches and the theft of their customers’ identities and credit card information

    Analysis of Cloud Security Controls in AWS, Azure, and Google Cloud

    Get PDF
    This research paper aims at solving the gap of information related to cloud security alliance top twenty critical controls. By reviewing the controls against the major cloud providers. Most organizations are adopting cloud for their business-critical applications. To make it secure, they need to understand the security controls they have access to and how they can perform cloud audits to assure the organization is secure in the cloud environment and complaint. To counter this predicament, Information technology professionals need to review the cloud security measures in AWS, Google Cloud, Azure against CIS top 20 controls, which will help security professionals identify the right cloud vendor for their business needs. This paper provides additional information to the reader who wants to understand the role of security controls in cloud environment and how they address the cloud security risk. Cloud users, cloud architects and cloud consumers will be able to understand how various cloud providers offer tools which assist in maintain the security controls. This research paper provides the base layer information and will help future research in cloud security controls

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Network Security: An Achilles Heel for Organizations of All Sizes Providing Backup in a VolP World Security Concerns Shift lnward Cell Phones, Land Lines, and E911 Security Checklists Higher Ed\u27s Tricky Equation: Directories Help Balance Availability with Security Disaster Recovery Planning Essentials Passing the Test of productivity Interview President\u27s Message From the Executive Director Here\u27s My Advic

    Campus Communications Systems: Converging Technologies

    Get PDF
    This book is a rewrite of Campus Telecommunications Systems: Managing Change, a book that was written by ACUTA in 1995. In the past decade, our industry has experienced a thousand-fold increase in data rates as we migrated from 10 megabit links (10 million bits per second) to 10 gigabit links (10 billion bits per second), we have seen the National Telecommunications Policy completely revamped; we have seen the combination of voice, data, and video onto one network; and we have seen many of our service providers merge into larger corporations able to offer more diverse services. When this book was last written, A CUT A meant telecommunications, convergence was a mathematical term, triple play was a baseball term, and terms such as iPod, DoS, and QoS did not exist. This book is designed to be a communications primer to be used by new entrants into the field of communications in higher education and by veteran communications professionals who want additional information in areas other than their field of expertise. There are reference books and text books available on every topic discussed in this book if a more in-depth explanation is desired. Individual chapters were authored by communications professionals from various member campuses. This allowed the authors to share their years of experience (more years than many of us would care to admit to) with the community at large. Foreword Walt Magnussen, Ph.D. Preface Ron Kovac, Ph.D. 1 The Technology Landscape: Historical Overview . Walt Magnussen, Ph.D. 2 Emerging Trends and Technologies . Joanne Kossuth 3 Network Security . Beth Chancellor 4 Security and Disaster Planning and Management Marjorie Windelberg, Ph.D. 5 Student Services in a University Setting . Walt Magnussen, Ph.D. 6 Administrative Services David E. O\u27Neill 7 The Business Side of Information Technology George Denbow 8 The Role of Consultants . David C. Metz Glossary Michelle Narcavag

    Analysis and Mitigation of Recent Attacks on Mobile Communication Backend

    Get PDF
    2014 aasta viimases kvartalis demonstreeriti mitmeid edukaid rünnakuid mobiilsidevõrkude vastu. Need baseerusid ühe peamise signaaliprotokolli, SS7 väärkasutamisel. Ründajatel õnnestus positsioneerida mobiilseadmete kasutajaid ja kuulata pealt nii kõnesid kui ka tekstisõnumeid. Ajal mil enamik viimase aja ründeid paljastavad nõrkusi lõppkasutajate seadmete tarkvaras, paljastavad need hiljutised rünnakud põhivõrkude endi haavatavust. Teadaolevalt on mobiilsete telekommunikatsioonivõrkude tööstuses raskusi haavatavuste õigeaegsel avastamisel ja nende mõistmisel. Käesolev töö on osa püüdlusest neid probleeme mõista. Töö annab põhjaliku ülevaate ja analüüsib teadaolevaid rünnakuid ning toob välja võimalikud lahendused. Rünnakud võivad olla väga suurte tagajärgedega, kuna vaatamata SS7 protokolli vanusele, jääb see siiski peamiseks signaaliprotokolliks mobiilsidevõrkudes veel pikaks ajaks. Uurimustöö analüüs ja tulemused aitavad mobiilsideoperaatoritel hinnata oma võrkude haavatavust ning teha paremaid investeeringuid oma taristu turvalisusele. Tulemused esitletakse mobiilsideoperaatoritele, võrguseadmete müüjatele ning 3GPP standardi organisatsioonile.In the last quarter of 2014, several successful attacks against mobile networks were demonstrated. They are based on misuse of one of the key signaling protocol, SS7, which is extensively used in the mobile communication backend for signaling tasks such as call and mobility management. The attackers were able to locate the mobile users and intercept voice calls and text messages. While most attacks in the public eye are those which exploits weaknesses in the end-device software or radio access links, these recently demonstrated vulnerabilities exploit weaknesses of the mobile core networks themselves. Understandably, there is a scramble in the mobile telecommunications industry to understand the attacks and the underlying vulnerabilities. This thesis is part of that effort. This thesis presents a broad and thorough overview and analysis of the known attacks against mobile network signaling protocols and the possible mitigation strategies. The attacks are presented in a uniform way, in relation to the mobile network protocol standards and signaling scenarios. Moreover, this thesis also presents a new attack that enables a malicious party with access to the signaling network to remove lost or stolen phones from the blacklist that is intended to prevent their use. Both the known and new attacks have been confirmed by implementing them in a controlled test environment. The attacks are serious because SS7, despite its age, remains the main signaling protocol in the mobile networks and will still long be required for interoperability and background compatibility in international roaming. Moreover, the number of entities with access to the core network, and hence the number of potential attackers, has increased significantly because of changes in regulation and opening of the networks to competition. The analysis and new results of this thesis will help mobile network providers and operators to assess the vulnerabilities in their infrastructure and to make security-aware decisions regarding their future investments and standardization. The results will be presented to the operators, network-equipment vendors, and to the 3GPP standards body

    A Lightweight Attribute-Based Access Control System for IoT.

    Get PDF
    The evolution of the Internet of things (IoT) has made a significant impact on our daily and professional life. Home and office automation are now even easier with the implementation of IoT. Multiple sensors are connected to monitor the production line, or to control an unmanned environment is now a reality. Sensors are now smart enough to sense an environment and also communicate over the Internet. That is why, implementing an IoT system within the production line, hospitals, office space, or at home could be beneficial as a human can interact over the Internet at any time to know the environment. 61% of International Data Corporation (IDC) surveyed organizations are actively pursuing IoT initiatives, and 6.8% of the average IT budgets is also being allocated to IoT initiatives. However, the security risks are still unknown, and 34% of respondents pointed out that data safety is their primary concern [1]. IoT sensors are being open to the users with portable/mobile devices. These mobile devices have enough computational power and make it di cult to track down who is using the data or resources. That is why this research focuses on proposing a dynamic access control system for portable devices in IoT environment. The proposed architecture evaluates user context information from mobile devices and calculates trust value by matching with de ned policies to mitigate IoT risks. The cloud application acts as a trust module or gatekeeper that provides the authorization access to READ, WRITE, and control the IoT sensor. The goal of this thesis is to offer an access control system that is dynamic, flexible, and lightweight. This proposed access control architecture can secure IoT sensors as well as protect sensor data. A prototype of the working model of the cloud, mobile application, and sensors is developed to prove the concept and evaluated against automated generated web requests to measure the response time and performance overhead. The results show that the proposed system requires less interaction time than the state-of-the-art methods
    corecore