8 research outputs found

    Vector-thread architecture and implementation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 181-186).This thesis proposes vector-thread architectures as a performance-efficient solution for all-purpose computing. The VT architectural paradigm unifies the vector and multithreaded compute models. VT provides the programmer with a control processor and a vector of virtual processors. The control processor can use vector-fetch commands to broadcast instructions to all the VPs or each VP can use thread-fetches to direct its own control flow. A seamless intermixing of the vector and threaded control mechanisms allows a VT architecture to flexibly and compactly encode application parallelism and locality. VT architectures can efficiently exploit a wide variety of loop-level parallelism, including non-vectorizable loops with cross-iteration dependencies or internal control flow. The Scale VT architecture is an instantiation of the vector-thread paradigm designed for low-power and high-performance embedded systems. Scale includes a scalar RISC control processor and a four-lane vector-thread unit that can execute 16 operations per cycle and supports up to 128 simultaneously active virtual processor threads. Scale provides unit-stride and strided-segment vector loads and stores, and it implements cache refill/access decoupling. The Scale memory system includes a four-port, non-blocking, 32-way set-associative, 32 KB cache. A prototype Scale VT processor was implemented in 180 nm technology using an ASIC-style design flow. The chip has 7.1 million transistors and a core area of 16.6 mm2, and it runs at 260 MHz while consuming 0.4-1.1 W. This thesis evaluates Scale using a diverse selection of embedded benchmarks, including example kernels for image processing, audio processing, text and data processing, cryptography, network processing, and wireless communication.(cont.) Larger applications also include a JPEG image encoder and an IEEE 802.11 la wireless transmitter. Scale achieves high performance on a range of different types of codes, generally executing 3-11 compute operations per cycle. Unlike other architectures which improve performance at the expense of increased energy consumption, Scale is generally even more energy efficient than a scalar RISC processor.by Ronny Meir Krashinsky.Ph.D

    Compiling and optimizing spreadsheets for FPGA and multicore execution

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007."September 2007."Includes bibliographical references (p. 102-104).A major barrier to developing systems on multicore and FPGA chips is an easy-to-use development environment. This thesis presents the RhoZeta spreadsheet compiler and Catalyst optimization system for programming multiprocessors and FPGAs. Any spreadsheet frontend may be extended to work with RhoZeta's multiple interpreters and behavioral abstraction mechanisms. RhoZeta synchronizes a variety of cell interpreters acting on a global memory space. RhoZeta can also compile a group of cells to multithreaded C or Verilog. The result is an easy-to-use interface for programming multicore microprocessors and FPGAs. A spreadsheet environment presents parallelism and locality issues of modem hardware directly to the user and allows for a simple global memory synchronization model. Catalyst is a spreadsheet graph rewriting system based on performing behaviorally invariant guarded atomic actions while a system is being interpreted by RhoZeta. A number of optimization macros were developed to perform speculation, resource sharing and propagation of static assignments through a circuit. Parallelization of a 64-bit serial leading-zero-counter is demonstrated with Catalyst. Fault tolerance macros were also developed in Catalyst to protect against dynamic faults and to offset costs associated with testing semiconductors for static defects. A model for partitioning, placing and profiling spreadsheet execution in a heterogeneous hardware environment is also discussed. The RhoZeta system has been used to design several multithreaded and FPGA applications including a RISC emulator and a MIDI controlled modular synthesizer.by Amir Hirsch.M.Eng
    corecore