2,117 research outputs found

    Erasures vs. Errors in Local Decoding and Property Testing

    Get PDF
    We initiate the study of the role of erasures in local decoding and use our understanding to prove a separation between erasure-resilient and tolerant property testing. Local decoding in the presence of errors has been extensively studied, but has not been considered explicitly in the presence of erasures. Motivated by applications in property testing, we begin our investigation with local list decoding in the presence of erasures. We prove an analog of a famous result of Goldreich and Levin on local list decodability of the Hadamard code. Specifically, we show that the Hadamard code is locally list decodable in the presence of a constant fraction of erasures, arbitrary close to 1, with list sizes and query complexity better than in the Goldreich-Levin theorem. We use this result to exhibit a property which is testable with a number of queries independent of the length of the input in the presence of erasures, but requires a number of queries that depends on the input length, n, for tolerant testing. We further study approximate locally list decodable codes that work against erasures and use them to strengthen our separation by constructing a property which is testable with a constant number of queries in the presence of erasures, but requires n^{Omega(1)} queries for tolerant testing. Next, we study the general relationship between local decoding in the presence of errors and in the presence of erasures. We observe that every locally (uniquely or list) decodable code that works in the presence of errors also works in the presence of twice as many erasures (with the same parameters up to constant factors). We show that there is also an implication in the other direction for locally decodable codes (with unique decoding): specifically, that the existence of a locally decodable code that works in the presence of erasures implies the existence of a locally decodable code that works in the presence of errors and has related parameters. However, it remains open whether there is an implication in the other direction for locally list decodable codes. We relate this question to other open questions in local decoding

    Local Testing for Membership in Lattices

    Get PDF
    Motivated by the structural analogies between point lattices and linear error-correcting codes, and by the mature theory on locally testable codes, we initiate a systematic study of local testing for membership in lattices. Testing membership in lattices is also motivated in practice, by applications to integer programming, error detection in lattice-based communication, and cryptography. Apart from establishing the conceptual foundations of lattice testing, our results include the following: 1. We demonstrate upper and lower bounds on the query complexity of local testing for the well-known family of code formula lattices. Furthermore, we instantiate our results with code formula lattices constructed from Reed-Muller codes, and obtain nearly-tight bounds. 2. We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive canonical tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1-21)

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure

    High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

    Full text link
    In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length nn, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})). Previously such codes were known to exist only with Ω(nβ)\Omega(n^{\beta}) query complexity (for constant β>0\beta > 0), and there were several, quite different, constructions known. Our codes are based on a general distance-amplification method of Alon and Luby~\cite{AL96_codes}. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant relative distance}. Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n)o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201

    05291 Abstracts Collection -- Sublinear Algorithms

    Get PDF
    From 17.07.05 to 22.07.05, the Dagstuhl Seminar 05291 ``Sublinear Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Hard Properties with (Very) Short PCPPs and Their Applications

    Get PDF
    We show that there exist properties that are maximally hard for testing, while still admitting PCPPs with a proof size very close to linear. Specifically, for every fixed ?, we construct a property P^(?)? {0,1}^n satisfying the following: Any testing algorithm for P^(?) requires ?(n) many queries, and yet P^(?) has a constant query PCPP whose proof size is O(n?log^(?)n), where log^(?) denotes the ? times iterated log function (e.g., log^(2)n = log log n). The best previously known upper bound on the PCPP proof size for a maximally hard to test property was O(n?polylog(n)). As an immediate application, we obtain stronger separations between the standard testing model and both the tolerant testing model and the erasure-resilient testing model: for every fixed ?, we construct a property that has a constant-query tester, but requires ?(n/log^(?)(n)) queries for every tolerant or erasure-resilient tester
    corecore