7,521 research outputs found

    Incorporating the water footprint and virtual water into policy: reflections from the Mancha Occidental Region, Spain

    Get PDF
    Water resource management is often a controversial issue in semiarid regions. Most water resources experts admit that water conflicts are not caused by the physical water scarcity but they are mainly due to inadequate water management. The virtual water concept (the volume of water used in the production of a commodity, good or service) together with the water footprint (indicator of water consumption that looks at both direct and indirect water use of a consumer or producer), links a large range of sectors and issues, thus providing a potentially appropriate framework to support more optimal water management practices by informing production and trade decisions. This paper provides an analysis of these two concepts within the context of the Mancha Occidental region, Spain, exploring the hydrological and economic aspects of agricultural production. In doing so, this work not only distinguishes between green and blue water but also between surface and groundwater. We conclude by discussing the practical implications of the results, as well as their potential limitations from the policy standpoint

    Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    Full text link
    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions: By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits - such as cob weight - and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GreenLab maize model. The paper discusses the potentials of GreenLab to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand

    Creating a Worldwide Network For the Global Environment for Network Innovations (GENI) and Related Experimental Environments

    Get PDF
    Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world

    Rural-urban food, nutrient and virtual water flows in selected West African cities

    Get PDF
    Food consumption / Water quality / Nutrients / Urban agricuture / Food production

    Innovation in Plant-Greenhouse Interactions and Crop Management

    Get PDF
    (Semi)-closed greenhouses allow for better control of climate conditions compared to conventional greenhouses. To make the high investments for such greenhouses economically feasible, substantial yield increases are necessary. In north-Europe supplementary assimilation light in greenhouse horticulture is increasingly used to improve yield and product quality to meet market demands for year-round production and to obtain a more regular labor demand throughout the year. Using inter-lighting instead of lights only on top of the crop, and Light Emitting Diodes (LEDs), could increase substantially light and energy efficiency. As soon as LEDs will reach high enough efficiency and feasible price, they are expected to replace high pressure sodium lamps in greenhouse horticulture. Another important issue is the choice of the greenhouse cover which should be optimized from the crop point of view. A cover with high transmission of light, but low transmission of NIR, results in a better climate during the warm season (reduced temperatures, less crop transpiration, higher CO2-concentration possible because of reduced ventilation demand). Increasing the diffusive power of the cover material could result in a better distribution of the radiation over the crop canopy, therefore leading to substantial increase in absorbed radiation (up to 20% for highly diffusive covers) and improving radiation use efficiency and yield. Under these new conditions (high CO2 and high light levels) other genotypes than the present cultivars may be superior. However, the possible effect of breeding especially for these new conditions is still little investigated. Under improved crop management, maintaining leaf area index high enough and controlling source-sink balance is discussed. In conclusion, there are a lot of possibilities to further improve yield and quality of greenhouse produce, and meanwhile reduce the input of fossil fuel energy

    A concept of water usage efficiency to support water reduction in manufacturing industry

    Get PDF
    Increasing pressures on freshwater supplies, continuity of supply uncertainties, and costs linked to legislative compliance, such as for wastewater treatment, are driving water use reduction up the agenda of manufacturing businesses. A survey is presented of current analysis methods and tools generally available to industry to analyze environmental impact of, and to manage, water use. These include life cycle analysis, water footprinting, strategic planning, water auditing, and process integration. It is identified that the methods surveyed do not provide insight into the operational requirements from individual process steps for water, instead taking such requirements as a given. We argue that such understanding is required for a proactive approach to long-term water usage reduction, in which sustainability is taken into account at the design stage for both process and product. As a first step to achieving this, we propose a concept of water usage efficiency which can be used to evaluate current and proposed processes and products. Three measures of efficiency are defined, supported by a framework of a detailed categorization and representation of water flows within a production system. The calculation of the efficiency measures is illustrated using the example of a tomato sauce production line. Finally, the elements required to create a useable tool based on the efficiency measures are discussed

    Ubiquitous Environment Control System: An Internet-of- Things–Based Decentralized Autonomous Measurement and Control System for a Greenhouse Environment

    Get PDF
    A low-cost and flexible system for environmental measurement and control in greenhouses based on decentralized autonomous technics, Ubiquitous Environment Control System (UECS), was proposed in 2004. The UECS is composed of autonomous nodes as the minimum units of measurement and control. The nodes can connect with each other through Ethernet or Wi-Fi and can communicate information regardless of manufacturer or model. To realize automation and efficiency of protected horticultural production, two consortia for UECS development and extension were established. During the last 10 years, the UECS has been used to apply environment control in large-scale greenhouses and plant factories. The stability and utility of the UECS have been demonstrated and verified in these practical cultivations. Current research and development are being carried out to install information and communication technology (ICT) systems to improve productivity in existing small- to medium-scale greenhouses in Japan. The flexibility and concept of the UECS have been very effective to enable sophisticated environmental control technology to be applied to small- and medium-scale greenhouses. In this chapter, self-fabricated UECS, the renewal of old environmental control systems using the UECS, and Sub-GHz radio band use for communicating UECS nodes among distributed greenhouses are discussed
    corecore