401 research outputs found

    Indoor Cooperative Localization for Ultra Wideband Wireless Sensor Networks

    Get PDF
    In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications. Localization information in these networks is an enabling technology and in some applications it is the main sought after parameter. The cooperative localization performance of WSNs is ultimately constrained by the behavior of the utilized ranging technology in dense cluttered indoor environments. Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited potential due to its large bandwidth and high time resolution. However, the performance of its ranging and cooperative localization capabilities in dense indoor multipath environments needs to be further investigated. Of main concern is the high probability of non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes, which biases the TOA estimation and degrades the localization performance. In this dissertation, we first present the results of measurement and modeling of UWB TOA-based ranging in different indoor multipath environments. We provide detailed characterization of the spatial behavior of ranging, where we focus on the statistics of the ranging error in the presence and absence of the DP and evaluate the pathloss behavior in the former case which is important for indoor geolocation coverage characterization. Parameters of the ranging error probability distributions and pathloss models are provided for different environments: traditional office, modern office, residential and manufacturing floor; and different ranging scenarios: indoor-to-indoor (ITI), outdoor-to-indoor (OTI) and roof-to-indoor (RTI). Based on the developed empirical models of UWB TOA-based OTI and ITI ranging, we derive and analyze cooperative localization bounds for WSNs in the different indoor multipath environments. First, we highlight the need for cooperative localization in indoor applications. Then we provide comprehensive analysis of the factors affecting localization accuracy such as network and ranging model parameters. Finally we introduce a novel distributed cooperative localization algorithm for indoor WSNs. The Cooperative LOcalization with Quality of estimation (CLOQ) algorithm integrates and disseminates the quality of the TOA ranging and position information in order to improve the localization performance for the entire WSN. The algorithm has the ability to reduce the effects of the cluttered indoor environments by identifying and mitigating the associated ranging errors. In addition the information regarding the integrity of the position estimate is further incorporated in the iterative distributed localization process which further reduces error escalation in the network. The simulation results of CLOQ algorithm are then compared against the derived G-CRLB, which shows substantial improvements in the localization performance

    Inter-Node Distance Estimation from Multipath Delay Differences of Channels to Observer Nodes

    Full text link
    We study the estimation of distance d between two wireless nodes by means of their wideband channels to a third node, called observer. The motivating principle is that the channel impulse responses are similar for small d and drift apart when d increases. Following this idea we propose specific distance estimators based on the differences of path delays of the extractable multipath components. In particular, we derive such estimators for rich multipath environments and various important cases: with and without clock synchronization as well as errors on the extracted path delays (e.g. due to limited bandwidth). The estimators readily support (and benefit from) the presence of multiple observers. We present an error analysis and, using ray tracing in an exemplary indoor environment, show that the estimators perform well in realistic conditions. We describe possible localization applications of the proposed scheme and highlight its major advantages: it requires neither precise synchronization nor line-of-sight connection. This could make wireless user tracking feasible in dynamic indoor settings.Comment: To appear at IEEE ICC 2019. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    An Iterative 5G Positioning and Synchronization Algorithm in NLOS Environments with Multi-Bounce Paths

    Full text link
    5G positioning is a very promising area that presents many opportunities and challenges. Many existing techniques rely on multiple anchor nodes and line-of-sight (LOS) paths, or single reference node and single-bounce non-LOS (NLOS) paths. However, in dense multipath environments, identifying the LOS or single-bounce assumptions is challenging. The multi-bounce paths will make the positioning accuracy deteriorate significantly. We propose a robust 5G positioning algorithm in NLOS multipath environments. The corresponding positioning problem is formulated as an iterative and weighted least squares problem, and different weights are utilized to mitigate the effects of multi-bounce paths. Numerical simulations are carried out to evaluate the performance of the proposed algorithm. Compared with the benchmark positioning algorithms only using the single-bounce paths, similar positioning accuracy is achieved for the proposed algorithm

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Hidden Markov models for radio localization in mixed LOS/NLOS conditions

    Get PDF
    Abstract—This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and the sight condition are Markov chains whose state is hidden in the received signals [hidden Markov model (HMM)]. The observations used for the HMM localization are obtained from the power-delay profile of the received signals. In ultrawideband (UWB) systems, the use of the whole power-delay profile, rather than the total power only, allows to reach higher localization accuracy, as the power-profile is a joint measurement of time of arrival and power. Numerical results show that the proposed HMM method improves the accuracy of localization with respect to conventional ranging methods, especially in mixed LOS/NLOS indoor environments. Index Terms—Bayesian estimation, hidden Markov models (HMM), mobile positioning, source localization, tracking algorithms

    Pairwise Distance and Position Estimators From Differences in UWB Channels to Observers

    Full text link
    We consider the problem of obtaining relative location information between two wireless nodes from the differences in their ultra-wideband (UWB) channels to observer nodes. Our approach focuses on the delays of multipath components (MPCs) extracted from the observed channels. For the two different cases of known and unknown MPC association between these channels, we present estimators for the distance and for the relative position vector between the two nodes. The position estimators require both MPC directions and MPC delays as input. All presented estimators exhibit very desirable technological properties: they do not require line-of-sight conditions, precise synchronization, or knowledge about the observer locations or about the environment. These advantages could enable low-cost wireless network localization in dynamic multipath environments. The exposition is complemented by a numerical evaluation of the estimation accuracy using random sampling, where especially the position estimators show the potential for great accuracy.Comment: To appear at the IEEE Global Communications Conference (GLOBECOM) Workshops 2021, Madrid, Spain. This work has been submitted to the IEEE for publication. Copyright may be transferred without notice. This is the short conference version of the full paper arXiv:2108.09703. v2 fixes a copy-and-paste error in (21). arXiv admin note: substantial text overlap with arXiv:2108.0970
    • …
    corecore