1,357 research outputs found

    GNSS-free outdoor localization techniques for resource-constrained IoT architectures : a literature review

    Get PDF
    Large-scale deployments of the Internet of Things (IoT) are adopted for performance improvement and cost reduction in several application domains. The four main IoT application domains covered throughout this article are smart cities, smart transportation, smart healthcare, and smart manufacturing. To increase IoT applicability, data generated by the IoT devices need to be time-stamped and spatially contextualized. LPWANs have become an attractive solution for outdoor localization and received significant attention from the research community due to low-power, low-cost, and long-range communication. In addition, its signals can be used for communication and localization simultaneously. There are different proposed localization methods to obtain the IoT relative location. Each category of these proposed methods has pros and cons that make them useful for specific IoT systems. Nevertheless, there are some limitations in proposed localization methods that need to be eliminated to meet the IoT ecosystem needs completely. This has motivated this work and provided the following contributions: (1) definition of the main requirements and limitations of outdoor localization techniques for the IoT ecosystem, (2) description of the most relevant GNSS-free outdoor localization methods with a focus on LPWAN technologies, (3) survey the most relevant methods used within the IoT ecosystem for improving GNSS-free localization accuracy, and (4) discussion covering the open challenges and future directions within the field. Some of the important open issues that have different requirements in different IoT systems include energy consumption, security and privacy, accuracy, and scalability. This paper provides an overview of research works that have been published between 2018 to July 2021 and made available through the Google Scholar database.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Cyclist-aware intelligent transportation system

    Get PDF
    Abstract. Rapidly developing cities make cycling popular way of traveling around and with enhanced smart traffic light infrastructure cycling can be safer and smoother. Smartphones with an internet connectivity and advanced positioning sensors can be used to build a cost-effective infrastructure to enable cyclist-aware traffic lights system. However, such systems depends on proper time of arrival estimation which can be affected by the GPS errors which works poorly in area with tall buildings and driver behaviour. In this paper we discuss how presence of feedback from smart traffic system influence the driver awareness of the cyclist and affects the negative impact of time of arrival estimation errors. This paper gives an analysis of the existing approaches to build smart cyclist-aware traffic systems and different sources of errors that affects their performance. With designed computer appliance we evaluated the effectiveness of cyclist-aware system with and without a presence of additional haptic and audio feedback. The results show that the presence of feedback positively affects the driver awareness of cyclist and allow them to react earlier. Experiment shows that just introduction of feedback can increase the accuracy of time of arrival estimation up to 34% without any other modification to the system.Pyöräilijät tiedostava älykäs liikennejärjestelmä. Tiivistelmä. Pyöräily on suosittu tapa liikkua nopeasti kasvavissa kaupungeissa. Parannetuilla älyliikennevaloilla pyöräilystä voisi tulla turvallisempaa ja sujuvampaa. Huokean infrastruktuurin rakentamisessa pyöräilijät tiedostavaan liikennevalojärjestelmään voidaan hyödyntää älypuhelinten verkkoyhteyttä sekä pitkälle kehitettynyttä paikannusmahdollisuutta. Paikannuksen haasteena kuitenkin ovat epätarkkuus korkeiden rakennusten katveessa sekä pyöräilijöiden ja autoilijoiden käyttäytyminen. Kyseisen kaltainen järjestelmä vaatii toimivan kulunaika-arvioinnin, mikä on haastavaa GPS-paikannuksen epätarkkuuden vuoksi. Tässä julkaisussa keskustelemme siitä, kuinka älykkäästä liikennejärjestelmästä saatu palaute vaikuttaa autoilijoiden tiedostavuuteen ja sitä kautta saapumisaika-arvioiden epätarkkuuteen. Analysoimme olemassa olevia älykkäitä pyöräiljät tiedostavia liikennejärjestelmiä ja niihin vaikuttavia epätarkkuus- sekä virhelähteitä. Käytämme kehittämäämme tietokone ohjelmaa arvioimaan pyöräilijät tiedostavan järjestelmän tehokkuutta käyttäen koemuuttujina haptista ja auditiivista palautetta. Tulokset paljastavat, että saatu palaute vaikuttaa positiivisesti parantaen autoilijoiden reaktioaikaa sekä sitä kuinka he tiedostavat pyöräiljät. Kokeet osoittavat, että pelkästään esittelyn ja palautteen olemassaolo lisäävät saapumisaika-arvioiden tarkkuutta jopa 34%

    Estimating the potential for shared autonomous scooters

    Full text link
    Recent technological developments have shown significant potential for transforming urban mobility. Considering first- and last-mile travel and short trips, the rapid adoption of dockless bike-share systems showed the possibility of disruptive change, while simultaneously presenting new challenges, such as fleet management or the use of public spaces. In this paper, we evaluate the operational characteristics of a new class of shared vehicles that are being actively developed in the industry: scooters with self-repositioning capabilities. We do this by adapting the methodology of shareability networks to a large-scale dataset of dockless bike-share usage, giving us estimates of ideal fleet size under varying assumptions of fleet operations. We show that the availability of self-repositioning capabilities can help achieve up to 10 times higher utilization of vehicles than possible in current bike-share systems. We show that actual benefits will highly depend on the availability of dedicated infrastructure, a key issue for scooter and bicycle use. Based on our results, we envision that technological advances can present an opportunity to rethink urban infrastructures and how transportation can be effectively organized in cities

    Feasibility Analysis of Non-electromagnetical Signals Collected via Thingsee Sensors for Indoor Positioning

    Get PDF
    Internet of Things (IoT) has significant impacts on wireless networking and communication technologies of modern times. Recently it has gained also attention in the field of indoor positioning and localization, both in research and industrial markets. IoT technologies enables access to the real time information about indoor environment which are collected through sensors. The sensor data is processed and analysed to understand the complexity of the indoor environment so that it can be used for making applications based on positioning. This thesis deals with some modern applications, challenges, key technologies and architectural overviews of Internet of Things including some recent works which were carried out based on electromagnetical and non-electromagnetical approaches. Then. a feasibility analysis is made for indoor positioning using non-electromagnetical sensor data which includes temperature, humidity, pressure and luminance. These sensors are also known as environmental sensors. An IoT development device named ‘Thingsee One’ was used where the environmental sensors were embedded in. The device was used for capturing environmental data from different locations inside a university building in Tampere, Finland. At first, Thingsee One device was configured for capturing temperature, humidity, pressure and luminance data from an indoor environment. Measurements were taken from different locations of the building, from first and second floor. Different times and weather condition were also taken into account during data capturing. Then the captured data has been analysed for identifying those positions through histograms and power maps. The results show that, the data captured by the sensors are highly dependent on time and weather which makes them rather inconsistent over the same position in different situations and time and therefore not likely candidates for positioning estimation

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Integrated design of transport infrastructure and public spaces considering human behavior: A review of state-of-the-art methods and tools

    Get PDF
    In order to achieve holistic urban plans incorporating transport infrastructure, public space and the behavior of people in these spaces, integration of urban design and computer modeling is a promising way to provide both qualitative and quantitative support to decision-makers. This paper describes a systematic literature review following a four-part framework. Firstly, to understand the relationship of elements of transport, spaces, and humans, we review policy and urban design strategies for promoting positive interactions. Secondly, we present an overview of the integration methods and strategies used in urban design and policy discourses. Afterward, metrics and approaches for evaluating the effectiveness of integrated plan alternatives are reviewed. Finally, this paper gives a review of state-of-the-art tools with a focus on seven computer simulation paradigms. This article explores mechanisms underlying the complex system of transport, spaces, and humans from a multidisciplinary perspective to provide an integrated toolkit for designers, planners, modelers and decision-makers with the current methods and their challenges

    Investigate Walkability: An Assessment Model to Support Urban Development Processes

    Get PDF
    This chapter is about defining and testing a multi-methodological frame- work able to measure the “walkability” in the urban practice perspective, based on assessment indicators and Geographic Information Systems (GIS). Nowadays, cities are facing a complex challenge concerning sustainability, which is fueling the search for new development solutions. Among others, one of the most important problems is how to make cities sustainable and resilient, as stressed by the Sustainable Develop- ment Goal 11 (SDG11) highlighted by the United Nations through the 2030 Agenda. The topic of “walkability” appears in this framework: Walking has ecological, social, economic and political benefits. Moreover, designing walkable networks is impor- tant to create a functional and multi-modal city with transport choices and makes urban settlements sustainable and inclusive from the perspective that a sustainable city is also a walkable city. However, despite the positive impact of walkability on public space, it is still difficult to fully include it in governmental strategies because of its novelty in the scientific debate. The ongoing research proposed here aims at: (i) describing the problem, related to what trends and strategies have been implemented to face it; (ii) investigating walkability, understanding its definition in the scientific panorama, and how it is evaluated; (iii) understanding the current evaluation methods to assess the walkability of spaces; (iv) proposing a new multi-methodological frame- work based on existing methods that are able to measure the walkability degree from the perspective of better planning of cities. The multi-methodological framework has been tested through a case study: the Politecnico di Torino Campus (Torino, Italy)

    A Sensor-Based mHealth Platform for Remote Monitoring and Intervention of Frailty Patients at Home

    Get PDF
    Frailty syndrome is an independent risk factor for serious health episodes, disability, hospitalization, falls, loss of mobility, and cardiovascular disease. Its high reversibility demands personalized interventions among which exercise programs are highly efficient to contribute to its delay. Information technology-based solutions to support frailty have been recently approached, but most of them are focused on assessment and not on intervention. This paper describes a sensor-based mHealth platform integrated in a service-based architecture inside the FRAIL project towards the remote monitoring and intervention of pre-frail and frail patients at home. The aim of this platform is constituting an efficient and scalable system for reducing both the impact of aging and the advance of frailty syndrome. Among the results of this work are: (1) the development of elderly-focused sensors and platform; (2) a technical validation process of the sensor devices and the mHealth platform with young adults; and (3) an assessment of usability and acceptability of the devices with a set of pre-frail and frail patients. After the promising results obtained, future steps of this work involve performing a clinical validation in order to quantify the impact of the platform on health outcomes of frail patients.Consejería de Conocimiento, Investigación y Universidad P18-TPJ-307

    Benefits and obstacles of sustainable product development methods : a case study in the field of urban mobility

    Get PDF
    In the last few years, numerous approaches have been introduced for supporting design engineers in developing more sustainable products. However, so far, these efforts have not led to the establishment of a commonly acknowledged standard methodology for Sustainable Product Development (SPD). This brings into question the relevance of developing new methods and calls for more efforts in testing the available ones. This article provides a reflection about the benefits and obstacles of applying existing SPD approaches to a real product development project. It reports the results of a project aimed at developing a new mobility solution under the constraints of sustainability-related targets. This project has led to the development of a new pedelec concept, focusing on the substitution of small passenger cars with the help of three SPD methods – Design for Sustainability Guidelines, Product Sustainability Index, and Life Cycle Sustainability Assessment. These methods have proved to be generally beneficial, thanks to a combination of qualitative and quantitative perspectives. However, the multitude of criteria offered by the methods put forth difficulties in evaluating which sustainability aspects are relevant and therefore lead to higher effort for information retrieval analysis and decision processes. Furthermore, the methods still lack an integrated perspective on the product, the corresponding services and the overarching system.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berli
    corecore