247 research outputs found

    Optimal Nonlocal means algorithm for denoising ultrasound image

    Get PDF
    We propose a new measure for denoising image by calculating mean distance of all pixels in an image in non-local means (NL-means) algorithm. We compute and analyze the original NL-means algorithm which total all the distance of the patches but, our proposed algorithm calculates the mean value of all distance of all the patches and then than get the sum of all distance. Our proposed algorithm exhibit better result with comparison of the existing NL-means algorithm. Keywords: NL-means, Patches, Mean Value, Measurement Matrix

    Evaluation of Digital Speckle Filters for Ultrasound Images

    Get PDF
    Ultrasound (US) images are inherently corrupted by speckle noise causing inaccuracy of medical diagnosis using this technique. Hence, numerous despeckling filters are used to denoise US images. However most of the despeckling techniques cause blurring to the US images. In this work, four filters namely Lee, Wavelet Linear Minimum Mean Square Error (LMMSE), Speckle-reduction Anisotropic Diffusion (SRAD) and Non-local-means (NLM) filters are evaluated in terms of their ability in noise removal and capability to preserve the image contrast. This is done through calculating four performance metrics Peak Signal to Noise Ratio (PSNR), Ultrasound Despeckling Assessment Index (USDSAI), Normalized Variance and Mean Preservation. The experiments were conducted on three different types of images which is simulated noise images, computer generated image and real US images. The evaluation in terms of PSNR, USDSAI, Normalized Variance and Mean Preservation shows that NLM filter is the best filter in all scenarios considering both speckle noise suppression and image restoration however with quite slow processing time. It may not be the best option of filter if speed is the priority during the image processing. Wavelet LMMSE filter is the next best performing filter after NLM filter with faster speed

    Image Denoising by a Local Clustering Framework

    Get PDF
    Images often contain noise due to imperfections in various image acquisition techniques. Noise should be removed from images so that the details of image objects (e.g., blood vessels, inner foldings, or tumors in the human brain) can be clearly seen, and the subsequent image analyses are reliable. With broad usage of images in many disciplines—for example, medical science—image denoising has become an important research area. In the literature, there are many different types of image denoising techniques, most of which aim to preserve image features, such as edges and edge structures, by estimating them explicitly or implicitly. Techniques based on explicit edge detection usually require certain assumptions on the smoothness of the image intensity surface and the edge curves which are often invalid especially when the image resolution is low. Methods that are based on implicit edge detection often use multiresolution smoothing, weighted local smoothing, and so forth. For such methods, the task of determining the correct image resolution or choosing a reasonable weight function is challenging. If the edge structure of an image is complicated or the image has many details, then these methods would blur such details. This article presents a novel image denoising framework based on local clustering of image intensities and adaptive smoothing. The new denoising method can preserve complicated edge structures well even if the image resolution is low. Theoretical properties and numerical studies show that it works well in various applications

    Euclidean Distance Matrices: Essential Theory, Algorithms and Applications

    Get PDF
    Euclidean distance matrices (EDM) are matrices of squared distances between points. The definition is deceivingly simple: thanks to their many useful properties they have found applications in psychometrics, crystallography, machine learning, wireless sensor networks, acoustics, and more. Despite the usefulness of EDMs, they seem to be insufficiently known in the signal processing community. Our goal is to rectify this mishap in a concise tutorial. We review the fundamental properties of EDMs, such as rank or (non)definiteness. We show how various EDM properties can be used to design algorithms for completing and denoising distance data. Along the way, we demonstrate applications to microphone position calibration, ultrasound tomography, room reconstruction from echoes and phase retrieval. By spelling out the essential algorithms, we hope to fast-track the readers in applying EDMs to their own problems. Matlab code for all the described algorithms, and to generate the figures in the paper, is available online. Finally, we suggest directions for further research.Comment: - 17 pages, 12 figures, to appear in IEEE Signal Processing Magazine - change of title in the last revisio

    A novel image enhancement method for mammogram images

    Get PDF
    Breast cancer has been reported by American Cancer Society as the second leading cause of death among all the cancers of women. It is also reported that the early detection of breast cancer can improve survival rate by allowing a wider range of treatment options. Mammography is believed to be an effective tool to help radiologists to detect the malignant breast cancer at the early stage. Image enhancement techniques can improve the quality of mammogram images with enhancing the details of key features, like the shape of microcalcifications. This thesis proposed a novel method to enhance mammogram images. The proposed method uses a three level Laplacian Pyramid (LP) scheme that applies the Squeeze Box Filter (SBF) instead of conventional low pass filtering. A previously proposed nonlinear local enhancement technique is applied to the difference image produced in the Laplacian Pyramid to contrast enhance the structural details of mammogram images. The enhanced mammogram image is reconstructed by adding all the enhanced difference images to the origianl SBF filtered image. Experimentation and quantitative results reported in this thesis provide empirical evidence on the robustness of the proposed image enhancement method on mammographic images

    Evaluation of Digital Speckle Filters for Ultrasound Images

    Get PDF
    Ultrasound (US) images are inherently corrupted by speckle noise causing inaccuracy of medical diagnosis using this technique. Hence, numerous despeckling filters are used to denoise US images. However most of the despeckling techniques cause blurring to the US images. In this work, four filters namely Lee, Wavelet Linear Minimum Mean Square Error (LMMSE), Speckle-reduction Anisotropic Diffusion (SRAD) and Non-local-means (NLM) filters are evaluated in terms of their ability in noise removal and capability to preserve the image contrast. This is done through calculating four performance metrics Peak Signal to Noise Ratio (PSNR), Ultrasound Despeckling Assessment Index (USDSAI), Normalized Variance and Mean Preservation. The experiments were conducted on three different types of images which is simulated noise images, computer generated image and real US images. The evaluation in terms of PSNR, USDSAI, Normalized Variance and Mean Preservation shows that NLM filter is the best filter in all scenarios considering both speckle noise suppression and image restoration however with quite slow processing time. It may not be the best option of filter if speed is the priority during the image processing. Wavelet LMMSE filter is the next best performing filter after NLM filter with faster speed
    • …
    corecore