2,887 research outputs found

    3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation

    Full text link
    Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.Comment: Awarded Best Paper at the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics 2017 (SSRR 2017

    ANALYZING BIG DATA WITH DECISION TREES

    Get PDF
    ANALYZING BIG DATA WITH DECISION TREE

    Heuristics for Sparsest Cut Approximations in Network Flow Applications

    Get PDF
    The Maximum Concurrent Flow Problem (MCFP) is a polynomially bounded problem that has been used over the years in a variety of applications. Sometimes it is used to attempt to find the Sparsest Cut, an NP-hard problem, and other times to find communities in Social Network Analysis (SNA) in its hierarchical formulation, the HMCFP. Though it is polynomially bounded, the MCFP quickly grows in space utilization, rendering it useful on only small problems. When it was defined, only a few hundred nodes could be solved, where a few decades later, graphs of one to two thousand nodes can still be too much for modern commodity hardware to handle. This dissertation covers three approaches to heuristics to the MCFP that run significantly faster in practice than the LP formulation with far less memory utilization. The first two approaches are based on the Maximum Adjacency Search (MAS) and apply to both the MCFP and the HMCFP used for community detection. We compare the three approaches to the LP performance in terms of accuracy, runtime, and memory utilization on several classes of synthetic graphs representing potential real-world applications. We find that the heuristics are often correct, and run using orders of magnitude less memory and time

    Holistic interpretation of visual data based on topology:semantic segmentation of architectural facades

    Get PDF
    The work presented in this dissertation is a step towards effectively incorporating contextual knowledge in the task of semantic segmentation. To date, the use of context has been confined to the genre of the scene with a few exceptions in the field. Research has been directed towards enhancing appearance descriptors. While this is unarguably important, recent studies show that computer vision has reached a near-human level of performance in relying on these descriptors when objects have stable distinctive surface properties and in proper imaging conditions. When these conditions are not met, humans exploit their knowledge about the intrinsic geometric layout of the scene to make local decisions. Computer vision lags behind when it comes to this asset. For this reason, we aim to bridge the gap by presenting algorithms for semantic segmentation of building facades making use of scene topological aspects. We provide a classification scheme to carry out segmentation and recognition simultaneously.The algorithm is able to solve a single optimization function and yield a semantic interpretation of facades, relying on the modeling power of probabilistic graphs and efficient discrete combinatorial optimization tools. We tackle the same problem of semantic facade segmentation with the neural network approach.We attain accuracy figures that are on-par with the state-of-the-art in a fully automated pipeline.Starting from pixelwise classifications obtained via Convolutional Neural Networks (CNN). These are then structurally validated through a cascade of Restricted Boltzmann Machines (RBM) and Multi-Layer Perceptron (MLP) that regenerates the most likely layout. In the domain of architectural modeling, there is geometric multi-model fitting. We introduce a novel guided sampling algorithm based on Minimum Spanning Trees (MST), which surpasses other propagation techniques in terms of robustness to noise. We make a number of additional contributions such as measure of model deviation which captures variations among fitted models

    A human-in-the-loop approach based on explainability to improve NTL detection

    Get PDF
    Implementing systems based on Machine Learning to detect fraud and other Non-Technical Losses (NTL) is challenging: the data available is biased, and the algorithms currently used are black-boxes that cannot be either easily trusted or understood by stakeholders. This work explains our human-in-the-loop approach to mitigate these problems in a real system that uses a supervised model to detect Non-Technical Losses (NTL) for an international utility company from Spain. This approach exploits human knowledge (e.g. from the data scientists or the company's stakeholders) and the information provided by explanatory methods to guide the system during the training process. This simple, efficient method that can be easily implemented in other industrial projects is tested in a real dataset and the results show that the derived prediction model is better in terms of accuracy, interpretability, robustness and flexibility.Peer ReviewedPostprint (author's final draft

    Learning With An Insufficient Supply Of Data Via Knowledge Transfer And Sharing

    Get PDF
    As machine learning methods extend to more complex and diverse set of problems, situations arise where the complexity and availability of data presents a situation where the information source is not adequate to generate a representative hypothesis. Learning from multiple sources of data is a promising research direction as researchers leverage ever more diverse sources of information. Since data is not readily available, knowledge has to be transferred from other sources and new methods (both supervised and un-supervised) have to be developed to selectively share and transfer knowledge. In this dissertation, we present both supervised and un-supervised techniques to tackle a problem where learning algorithms cannot generalize and require an extension to leverage knowledge from different sources of data. Knowledge transfer is a difficult problem as diverse sources of data can overwhelm each individual dataset\u27s distribution and a careful set of transformations has to be applied to increase the relevant knowledge at the risk of biasing a dataset\u27s distribution and inducing negative transfer that can degrade a learner\u27s performance. We give an overview of the issues encountered when the learning dataset does not have a sufficient supply of training examples. We categorize the structure of small datasets and highlight the need for further research. We present an instance-transfer supervised classification algorithm to improve classification performance in a target dataset via knowledge transfer from an auxiliary dataset. The improved classification performance of our algorithm is demonstrated with several real-world experiments. We extend the instance-transfer paradigm to supervised classification with Absolute Rarity\u27 , where a dataset has an insufficient supply of training examples and a skewed class distribution. We demonstrate one solution with a transfer learning approach and another with an imbalanced learning approach and demonstrate the effectiveness of our algorithms with several real world text and demographics classification problems (among others). We present an unsupervised multi-task clustering algorithm where several small datasets are simultaneously clustered and knowledge is transferred between the datasets to improve clustering performance on each individual dataset and we demonstrate the improved clustering performance with an extensive set of experiments
    • …
    corecore