69 research outputs found

    Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    Get PDF
    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user

    Using Visual Cues to Enhance Haptic Feedback for Palpation on Virtual Model of Soft Tissue

    Get PDF
    This paper explores methods that make use of visual cues aimed at generating actual haptic sensation to the user, namely pseudo-haptics. We propose a new pseudo-haptic feedback based method capable of conveying 3D haptic information and combining visual haptics with force feedback to enhance the user’s haptic experience. We focused on an application related to tumor identification during palpation and evaluated the proposed method in an experimental study where users interacted with a haptic device and graphical interface while exploring a virtual model of soft tissue, which represented stiffness distribution of a silicone phantom tissue with embedded hard inclusions. The performance of hard inclusion detection using force feedback only, pseudo-haptic feedback only, and the combination of the two feedbacks were compared with the direct hand touch. The combination method and direct hand touch had no significant difference in the detection results. Compared with the force feedback alone, our method increased the sensitivity by 5%, the positive predictive value by 4%, and decreased detection time by 48.7%. The proposed methodology has great potential for robot-assisted minimally invasive surgery and in all applications where remote haptic feedback is needed

    Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    Get PDF
    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user

    Pseudo-Haptics for Rigid Tool/Soft Object Interaction Feedback in Virtual Environments

    Get PDF
    This paper proposes a novel pseudo-haptics soft object stiffness simulation technique which is a marked improvement to currently used simulation methods and an effective low-cost alternative to expensive 3-DOF haptic devices. Soft object stiffness simulation is achieved by maneuvering an indenter avatar over the surface of a virtual soft object by means of an input device, such as a mouse, a joystick, or a touch-sensitive tablet. The alterations to the indenter avatar behavior produced by the proposed technique create for the user the illusion of interaction with a hard inclusion embedded in the soft object. The proposed pseudo-haptics technique is validated with a series of experiments conducted by employing three types of 2-DOF force-sensitive haptic surfaces, including a touchpad, a tablet with an S-pen input, and a tablet with a bare finger input. It is found that both the sensitivity and the positive predictive value of hard inclusion detection can be significantly improved by 33.3% and 13.9% respectively by employing tablet computers. Using tablet computers could produce results comparable to direct hand touch in detecting hard inclusions in a soft object. The experimental results presented here confirm the potential of the proposed technique for conveying haptic information in rigid tool / soft object interaction in virtual environments

    The effect of indentation force and displacement on visual perception of compliance

    Get PDF
    This paper investigates the effect of maximum indentation force and depth on people's ability to accurately discriminate compliance using indirect visual information only. Participants took part in two psychophysical experiments in which they were asked to choose the 'softest' sample out of a series of presented sample pairs. In the experiments, participants observed a computer-actuated tip indent the sample pairs to one of two conditions; maximum depth (10mm) or maximum force (4N). This indentation process simulates tool operated palpation in laparoscopic surgery. Results were used to plot psychometric functions as a measure of accuracy of compliance discriminability. A comparison indicated that participants performed best in the task where they judged samples being indented to a pre-set maximum force relying solely on visual cues, which demonstrates the effect of visual information on compliance discrimination. Results also show that indentation cues such as force and deformation depth have different effects on our ability to visually discriminate compliance. These findings will inform future work on designing a haptic feedback system capable of augmenting visual and haptic information independently for optimal compliance discrimination performance

    A tactile sensing and feedback system for tumor localization

    Get PDF

    The impact of visual cues on haptic compliance discrimination using a pseudo-haptic robotic system

    Get PDF
    A psychophysical magnitude estimation experiment was set up to determine the extent of the contribution of visual feedback during haptic compliance discrimination. Subjects remotely palpated physical compliant samples using a novel pseudo-haptic feedback system which allowed for independent manipulation of visual and haptic feedback. Subjects were asked to rate the compliance of a test sample based on that of a reference sample. While visual feedback was modified by switching the physical test samples shown to participants during indentation, haptic compliance of the test samples was always identical to that of the reference sample. Any variations in haptic sensation was a result of pseudo-haptic illusions. Ratings were collated and fitted to Steven's power law as well as Weber's law. A 0.18 power exponent suggests that the system was successful in generating viscoelastic properties through variations in visual information only. A 19.6% visual change from the reference compliance was necessary in order to perceive a change in haptic compliance using the pseudo-haptic system. These findings could prove beneficial in research and educationalfacilities where advanced force feedback devices are limited or inaccessible, where the concept of pseudo-haptics could be used to simulate various mechanical properties of virtual tissue for training purposes without the needfor complicated or costly force feedback

    Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach

    Get PDF
    Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.Peer ReviewedPostprint (author's final draft

    Determining the Contribution of Visual and Haptic Cues during Compliance Discrimination in the Context of Minimally Invasive Surgery

    Get PDF
    While minimally invasive surgery is replacing open surgery in an increasing number of surgical procedures, it still poses risks such as unintended tissue damage due to reduced visual and haptic feedback. Surgeons assess tissue health by analysing mechanical properties such as compliance. The literature shows that while both types of feedback contribute to the final percept, visual information is dominant during compliance discrimination tasks. The magnitude of that contribution, however, was never quantitatively determined. To determine the effect of the type of visual feedback on compliance discrimination, a psychophysical experiment was set up using different combinations of direct and indirect visual and haptic cues. Results reiterated the significance of visual information and suggested a visio-haptic cross-modal integration. Consequently, to determine which cues contributed most to visual feedback, the impact of force and position on the ability to discriminate compliance using visual information only was assessed. Results showed that isolating force and position cues during indentation enhanced performance. Furthermore, under force and position constraints, visual information was shown to be sufficient to determine the compliance of deformable objects. A pseudo-haptic feedback system was developed to quantitatively determine the contribution of visual feedback during compliance discrimination. A psychophysical experiment showed that the system realistically simulated viscoelastic behaviour of compliant objects. Through a magnitude estimation experiment, the pseudo-haptic system was shown to be successful at generating haptic sensations of compliance during stimuli indentation only by modifying the visual feedback presented to participants. This can be implemented in research and educational facilities where advanced force feedback devices are inaccessible. Moreover, it can be incorporated into virtual reality simulators to enhance force ranges. Future work will assess the value of visual cue augmentation in more complicated surgical tasks
    corecore