436 research outputs found

    Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model

    Get PDF
    BACKGROUND: An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. METHODS AND RESULTS: As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. DISCUSSION: This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution

    Antenna and system design for controlled delivery of microwave thermal ablation

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringPunit PrakashMicrowave ablation is an established minimally invasive modality for thermal ablation of unresectable tumors and other diseases. The goal of a microwave ablation procedure is to deliver microwave power in a manner localized to the targeted tissue, with the objective of raising the target tissue to ablative temperatures (~60 °C). Engineering efforts in microwave applicator design have largely been focused on the design of microwave antennas that yield large, near-spherical ablation zones, and can fit within rigid needles or flexible catheters. These efforts have led to significant progress in the development and clinical application of microwave ablation systems, particularly for treating tumors in the liver and other highly vascular organs. However, currently available applicator designs are ill-suited to treating targets of diverse shapes and sizes. Furthermore, there are a lack of non-imaging-based techniques for monitoring the transient progression of the ablation zone as a means for providing feedback to the physician. This dissertation presents the design, implementation, and experimental evaluation of microwave ablation antennas for site-specific therapeutic applications with these issues in mind. A deployable 915 MHz loop antenna is presented, providing a minimally-invasive approach for thermal ablation of the endometrial lining of the uterus for treatment of heavy menstrual bleeding. The antenna incorporates a radiating loop, which can be deployed to adjustable shapes within the uterine cavity, and a passive element, to enable thermal ablation, to 5.7–9.6 mm depth, of uterine cavities ranging in size from 4–6.5 cm in length and 2.5–4.5 cm in width. Electromagnetic–bioheat transfer simulations were employed for design optimization of the antennas, and proof-of-concept applicators were fabricated and extensively evaluated in ex vivo tissue. Finally, feasibility of using the broadband antenna reflection coefficient for monitoring the ablation progress during the course of ablation was evaluated. Experimental studies demonstrated a shift in antenna resonant frequency of 50 MHz correlated with complete ablation. For treatment of 1–2 cm spherical targets, water-cooled monopole antennas operating at 2.45 and 5.8 GHz were designed and experimentally evaluated in ex vivo tissue. The technical feasibility of using these applicators for treating 1–2 cm diameter benign adrenal adenomas was demonstrated. These studies demonstrated the potential of using minimally-invasive microwave ablation applicators for treatment of hypertension caused by benign aldosterone producing adenomas. Since tissue dielectric properties have been observed to change substantially at elevated temperatures, knowledge of the temperature-dependence of tissue dielectric properties may provide a means for estimating treatment state from changes in antenna reflection coefficient during a procedure. The broadband dielectric properties of bovine liver, an established tissue for experimental characterization of microwave ablation applicators, were measured from room temperature to ablative temperatures. The measured dielectric data were fit to a parametric model using piecewise linear functions, providing a means for readily incorporating these data into computational models. These data represent the first report of changes in broadband dielectric properties of liver tissue at ablative temperatures and should help enable additional studies in ablation system development

    Non-Invasive Electromagnetic Biological Microwave Testing

    Get PDF
    Blood glucose monitoring is a primary tool for the care of diabetic patients. At present, there is no noninvasive monitoring technique of blood glucose concentration that is widely accepted in the medical industry. New noninvasive measurement techniques are being investigated. This work focuses on the possibility of a monitor that noninvasively measures blood glucose levels using electromagnetic waves. The technique is based on relating a monitoring antenna’s resonant frequency to the permittivity, and conductivity of skin, which in turn, is related to the glucose levels. This becomes a hot researched field in recent years. Different types of antennas (wideband and narrowband) have been designed, constructed, and tested in free space. An analytical model for the antenna has been developed, which has been validated with simulations. Microstrip antenna is one of the most common planar antenna structures used. Extensive research development aimed at exploiting its advantages such as lightweight, low cost, conformal configurations, and compatibility with integrated circuits have been carried out. Rectangular and circular patches are the basic shapes that are the most commonly used in microstrip antennas. Ideally, the dielectric constant εr, however, and other performance requirements may dictate the use of substrate whose dielectric constant can be greater. As in our prototype blood sensor, the miniaturized size is one of the main challenges

    Monitoring thermal ablation via microwave tomography. An ex vivo experimental assessment

    Get PDF
    Thermal ablation treatments are gaining a lot of attention in the clinics thanks to their reduced invasiveness and their capability of treating non-surgical patients. The effectiveness of these treatments and their impact in the hospital's routine would significantly increase if paired with a monitoring technique able to control the evolution of the treated area in real-time. This is particularly relevant in microwave thermal ablation, wherein the capability of treating larger tumors in a shorter time needs proper monitoring. Current diagnostic imaging techniques do not provide effective solutions to this issue for a number of reasons, including economical sustainability and safety. Hence, the development of alternative modalities is of interest. Microwave tomography, which aims at imaging the electromagnetic properties of a target under test, has been recently proposed for this scope, given the significant temperature-dependent changes of the dielectric properties of human tissues induced by thermal ablation. In this paper, the outcomes of the first ex vivo experimental study, performed to assess the expected potentialities of microwave tomography, are presented. The paper describes the validation study dealing with the imaging of the changes occurring in thermal ablation treatments. The experimental test was carried out on two ex vivo bovine liver samples and the reported results show the capability of microwave tomography of imaging the transition between ablated and untreated tissue. Moreover, the discussion section provides some guidelines to follow in order to improve the achievable performances

    Antenna Development for Radio Frequency Hyperthermia Applications

    Get PDF
    This thesis deals with the design steps, development and validation of an applicator for radio frequency hyperthermia cancer therapy. An applicator design to enhance targeted energy coupling is a key enabler for preferential temperature increments in tumour regions. A single-element, near-field approach requires a miniaturised solution, that addresses ergonomic needs and is tolerant to patient anatomy. The antenna war-field rriodality and the high-dielectric patient loading introduce significant analytical and computational resource challenges. The antenna input impedance has to be sufficiently insensitive to in-band resonant cletuning and the fields in the tissue can he targeted to selected areas in the patient. An introduction to the medical and biological background of hyperthermia is presented. The design requirements of antennas for medical and in particular for hyperthermia applications are highlighted. Starting from a conventional circular patch, the antenna evolved into a compact circular patch with a concentric annular ring and slotted groundplane, operating at the 434 MHz Industrial Scientific and Medical frequency band. Feed point location is optimized for an energy deposition pattern aligned with the antenna centre. The applicator is assessed with other published approaches and clinically used loop, dipole and square patch antennas. The antennas are evaluated for the unloaded condition and when loaded with a tri-layer body tissue numerical model. This model comprises skin, fat and transverse fiber of muscle of variable thicknesses to account for different body locations and patient. anatomy. A waterbolus containing de-ionized water is added at the skin interface for superficial tissue cooling aud antelina matching. The proposed applicator achieves a penetration depth that supersedes other approaches while remaining compact and an ergonomic fit to tumour areas on the body. To consider the inner and peripheral complex shapes of human bodies, the full human body numerical model developed by Remcom is used. This model was segmented from 1 mm step computed tomography (CT) and magnetic resonance imaging (MRI) cross-sections through and adult male and it comprises twenty-three tissue types with thermal and frequency-dependent dielectric properties. The applicator performance is evaluated at three anatomical body areas of the model to assess its suitability for treatment of tumours at different locations. These three anatomical regions present different aperture coupling and tissue composition. \u27Different conformal waterbolus and air gap thickness values are evaluated. The models used in this work are validated with measurements performed in a phantom containing a lossy liquid with dielectric properties representative of homogeneous human body tissue. The dosimetric assessment system (DASY) is used to evaluaxe the specific absorption rate (SAR) generated for the antenna into the liquid. The measurement setup with the antenna, phantom and liquid are simulated. Simulated and measured results in terrms of specific absorption rate and return loss are evaluated

    Feasibility of a non-invasive wireless blood glucose monitor

    Get PDF
    Blood glucose monitors are critical to diabetes management. Many new noninvasive measurement techniques are being investigated. The present work focuses on the possibility of a monitor that non-invasively measures blood glucose levels using electromagnetic waves. The technique is based on relating a monitoring antenna\u27s resonant frequency to the permittivity and conductivity of blood which in turn is related to the glucose levels. At first a realistic data base for the dielectric properties of blood has been established through in-vitro measurements performed on blood samples obtained from 20 patients with glucose levels ranging from normal (87 mg/dl) to hyperglycemic (330 mg/dl). Using the Agilent 85070E dielectric probe and an Agilent 8720B network analyzer the dielectric permittivity and conductivity of the blood samples have been measured over a frequency range of 1GHz - 10GHz. The Cole-Cole model has been modified through curve fitting to in-vitro data that includes a factor representing glucose levels. Two antennas (wideband and narrowband) have been designed, constructed and tested in free space. A simulation model of layered tissue and blood together with an antenna has been created to study the effect of changing glucose levels. It is noted that the antenna\u27s resonant frequency increases with increase in glucose levels. An analytical model for the antenna has been developed, which has been validated with simulations. The model consists of a lumped-element antenna that represents a narrowband radiator. The resonant frequency of the radiator is dictated by a resonant LCR circuit, which is a function of the materials within the antenna\u27s near-field. A measurement system has been developed to measure the resonant frequency of the antenna. A frequency synthesizer generates an RF signal over the desired frequency range. This signal is sent to the antenna through a directional coupler that generates forward and reflected signals. These voltages are measured and the reflection coefficient is calculated with a microprocessor. As an experimental verification, two antennas were strapped one on each leg of a patient with one antenna connected to the PNA and the other to the measurement system. As the patient ingested fast acting glucose tablets, the blood glucose level was measured by a traditional glucose meter. At the same time, a comparison of the resonant frequency of the antenna measured by the PNA and by the measurement system showed good agreement. Further, it is seen that the antenna resonant frequency increases as the glucose level increases, which is consistent with the simulation model

    Modeling the SIGMA-Eye Applicator for Hyperthermia via Multiple Infinitesimal Dipoles

    Get PDF
    Over the past several decades, cancer is still one of the leading causes of human deaths. Hyperthermia treatment, which is mostly performed in clinic as an assistant therapy method combined with chemotherapy or radiation therapy, has been also playing a more and more important role in tumor therapy. Driven by the developments of computing power and computational techniques, personalized hyperthermia treatment planning (HTP) is becoming possible and essential for clinical practice, aimed at achieving maximum treatment effects for tumor targets and minimal side effects for the surrounding tissues simultaneously. As an essential step of Electromagnetic Hyperthermia Treatment Planning, electromagnetic simulation with the phased-array applicator, SIGMA-Eye hyperthermia applicator, was explored. The approach of the basic-building-block-based modified Infinitesimal Dipole Model (IDM) as a virtual source model was developed and used for modeling the hyperthermia SIGMA-Eye applicator (BSD Medical Corporation) in this work. The basic idea of the IDM [1] is to replace the antenna with a series of infinitesimal dipoles which generates the same electric field as the antenna does. On the basis of the conventional IDM, a modified IDM is proposed, in which number and locations of dipoles are predefined. The reduced set of dipole parameters leads to a simpler objective function of the modified IDM in comparison to the conventional IDM concerning parameter fitting. In addition, the concept of a ‘basic building block’ [2] is introduced: the antenna under test (active antenna) and its neighboring antenna elements (passive antennas) are considered as a basic building block. The dipole model of the antenna under test will be fit by approximating the electric field of the block in order to correctly treat the mutual coupling between antenna elements. Therefore, electric fields generated by a phased-array applicator (with significant mutual coupling between elements) can be modeled. In this work, each antenna of the SIGMA-Eye applicator was modelled using the basic-building-block-based modified IDM. Taking the electric field data of the basic building block computed from the software COMSOL Multiphysics as reference, the global optimization algorithm OQNLP (OptQuest Nonlinear Programming) [3] was used for parameter fitting of the dipole models. And then the SIGMA-Eye applicator was simulated by the superposition of each simulated antenna. Electromagnetic simulations with different phase combinations of the antenna elements of the applicator were performed. The resulted electromagnetic energy deposition patterns were compared to the measurement data presented in the reference paper [4], where the electric field measurement within the phantom placed inside the SIGMA-Eye applicator was performed. The relative differences of energy deposition patterns ranged from 1.40% to 17.90% with an average at 5.07%. The agreement of energy deposition patterns between simulation data and measurement data justified the applicability of our virtual source model to hyperthermia forward planning and further to the commissioning of new systems. In addition, the frequency dependence and water-bolus permittivity and conductivity dependence of the block-based modified IDM was explored, and it was found that this approach is applicable for a narrow-band frequency, and is adaptable to the uncertainty of the water-bolus permittivity and conductivity. When operating at a frequency further away from the reference frequency, or the surrounding environment of the antennas changes a lot, the applicator needs to be simulated using a new equivalent model. [1] Mikki, S.M. and A.A. Kishk, Theory and applications of infinitesimal dipole models for computational electromagnetics. Ieee Transactions on Antennas and Propagation, 2007. 55(5): p. 1325-1337. [2] Mikki, S.M. and Y.M.M. Antar, Near-Field Analysis of Electromagnetic Interactions in Antenna Arrays Through Equivalent Dipole Models. Ieee Transactions on Antennas and Propagation, 2012. 60(3): p. 1381-1389. [3] Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J. and Martí, R, Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization. INFORMS Journal on Computing, 2007. 19(3): p. 328-340. [4] F.Turner, P., Technical Aspect of the BSD-2000 and BSD-2000∙3D, in European Society for Hyperthermia Oncology and BSD Medical Corporation User’s Conference. 1997

    Detecting Vital Signs with Wearable Wireless Sensors

    Get PDF
    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented
    corecore