264 research outputs found

    Wireless Sensor Network for Monitoring Applications

    Get PDF
    The goal of this project was to design and build a wireless sensor network. Following an exploration of personal area networks and mesh networking, a system was implemented to detect physical intrusion. To that end, our network employed sensor nodes equipped with motion sensors and accelerometers. The network communicated with a generic infrastructure, adaptable to future wireless sensor projects, which stored sensor data in a database. Also included was a user interface to monitor the status of the entire system

    Systematic Design of edical Capsule Robots

    Get PDF
    Medical capsule robots that navigate inside the body as diagnostic and interventional tools are an emerging and challenging research area within medical CPSs. These robots must provide locomotion, sensing, actuation, and communication within severe size, power, and computational constraints. This paper presents the first effort for an open architecture, platform design, software infrastructure, and a supporting modular design environment for medical capsule robots to further this research area

    Wireless sensor integration for bridge model health monitoring

    Get PDF
    An integrated hardware and software system for a scalable wireless sensor network (WSN) is designed and developed for structural health monitoring. An extension sensor board is designed, developed, and calibrated to meet the requirements for structural vibration monitoring and modal identification. The extension sensor board has 3 axes of accelerometers in three directions and a temperature sensor. Software components have been implemented within the TinyOS operating system to provide a flexible software platform and scalable performance for structural health monitoring applications. The prototype WSN is deployed on a reduced-scale bridge model with 3 nodes in a single-hop network for performing dynamic monitoring civil engineering structures. Two output-only time-domain system identification methods are employed namely, the Frequency Domain Decomposition (FDD) method and the Natural Excitation Technique (NExT) combined with the Eigensystem Realization Algorithm (ERA). Testing results show that the WSN provides accurate vibration data for identifying vibration modes of a bridge

    Practical and Robust Power Management for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks: WSNs) consist of tens or hundreds of small, inexpensive computers equipped with sensors and wireless communication capabilities. Because WSNs can be deployed without fixed infrastructure, they promise to enable sensing applications in environments where installing such infrastructure is not feasible. However, the lack of fixed infrastructure also presents a key challenge for application developers: sensor nodes must often operate for months or years at a time from fixed or limited energy sources. The focus of this dissertation is on reusable power management techniques designed to facilitate sensor network developers in achieving their systems\u27 required lifetimes. Broadly speaking, power management techniques fall into two categories. Many power management protocols developed within the WSN community target specific hardware subsystems in isolation, such as sensor or radio hardware. The first part of this dissertation describes the Adaptive and Robust Topology control protocol: ART), a representative hardware-specific technique for conserving energy used by packet transmissions. In addition to these single-subsystem approaches, many applications can benefit greatly from holistic power management techniques that jointly consider the sensing, computation, and communication costs of potential application configurations. The second part of this dissertation extends this holistic power management approach to two families of structural health monitoring applications. By applying a partially-decentralized architecture, the cost of collecting vibration data for analysis at a centralized base station is greatly reduced. Finally, the last part of this dissertation discusses work toward a system for clinical early warning and intervention. The feasibility of this approach is demonstrated through preliminary study of an early warning component based on historical clinical data. An ongoing clinical trial of a real-time monitoring component also provides important guidelines for future clinical deployments based on WSNs

    Development of a Robust Wireless Sensor Mesh and Multi-hop Network

    Get PDF
    Wireless networking has evolved rapidly since the first wireless device was invented. Throughout those years, researchers and engineers are struggling to apply the knowledge of wireless networking in useful ways in real life. Wireless Sensor Network (WSN) has been used in many applications, from habitat surveying to critical monitoring. Reliability of the WSN plays a major role in deciding whether it should be used or not in critical applications instead of using traditional wireless technology or wired networking. This project is solely a research and development of routing algorithm for WSN by using an existing source and straight away finding its weak point in order to apply further improvisation. The existing routing algorithms used are the XMESH and Ad-Hoc On-Demand Vector Routing (AODV)

    Cyber-Physical Codesign of Distributed Structural Health Monitoring with Wireless Sensor Networks

    Get PDF
    Our Deteriorating Civil Infrastructure Faces the Critical Challenge of Long-Term Structural Health Monitoring for Damage Detection and Localization. in Contrast to Existing Research that Often Separates the Designs of Wireless Sensor Networks and Structural Engineering Algorithms, This Paper Proposes a Cyber-Physical Codesign Approach to Structural Health Monitoring based on Wireless Sensor Networks. Our Approach Closely Integrates 1) Flexibility-Based Damage Localization Methods that Allow a Tradeoff between the Number of Sensors and the Resolution of Damage Localization, and 2) an Energy-Efficient, Multilevel Computing Architecture Specifically Designed to Leverage the Multiresolution Feature of the Flexibility-Based Approach. the Proposed Approach Has Been Implemented on the Intel Imote2 Platform. Experiments on a Simulated Truss Structure and a Real Full-Scale Truss Structure Demonstrate the System\u27s Efficacy in Damage Localization and Energy Efficiency

    Performance evaluation of a prototyped wireless ground sensor networks

    Get PDF
    This thesis investigated the suitability of wireless, unattended ground sensor networks for military applications. The unattended aspect requires the network to self-organize and adapt to dynamic changes. A wireless, unattended ground sensor network was prototyped using commercial off-the-shelf technology and three to four networked nodes. Device and network performance were measured under indoor and outdoor scenarios. The measured communication range of a node varied between three and nineteen meters depending on the scenario. The sensors evaluated were an acoustic sensor, a magnetic sensor, and an acceleration sensor. The measured sensing range varied by the type of sensor. Node discovery durations observed were between forty seconds and over five minutes. Node density calculations indicated that the prototype was scalable to five hundred nodes. This thesis substantiated the feasibility of interconnecting, self-organizing sensor nodes in military applications. Tests and evaluations demonstrated that the network was capable of dynamic adaptation to failure and degradation.http://archive.org/details/performanceevalu109452263Approved for public release; distribution is unlimited

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore