3,050 research outputs found

    Scalable and deterministic timing-driven parallel placement for FPGAs

    Full text link

    Simultaneous timing driven clustering and placement for FPGAs

    Get PDF
    Abstract. Traditional placement algorithms for FPGAs are normally carried out on a fixed clustering solution of a circuit. The impact of clustering on wirelength and delay of the placement solutions is not well quantified. In this paper, we present an algorithm named SCPlace that performs simultaneous clustering and placement to minimize both the total wirelength and longest path delay. We also incorporate a recently proposed path counting-based net weighting schem

    CRoute: a fast high-quality timing-driven connection-based FPGA router

    Get PDF
    FPGA routing is an important part of physical design as the programmable interconnection network requires the majority of the total silicon area and the connections largely contribute to delay and power. It should also occur with minimum runtime to enable efficient design exploration. In this work we elaborate on the concept of the connection-based routing principle. The algorithm is improved and a timing-driven version is introduced. The router, called CROUTE, is implemented in an easy to adapt FPGA CAD framework written in Java, which is publicly available on GitHub. Quality and runtime are compared to the state-of-the-art router in VPR 7.0.7. Benchmarking is done with the TITAN23 design suite, which consists of large heterogeneous designs targeted to a detailed representation of the Stratix IV FPGA. CROUTE gains in both the total wirelength and maximum clock frequency while reducing the routing runtime. The total wire-length reduces by 11% and the maximum clock frequency increases by 6%. These high-quality results are obtained in 3.4x less routing runtime

    The use of field-programmable gate arrays for the hardware acceleration of design automation tasks

    Get PDF
    This paper investigates the possibility of using Field-Programmable Gate Arrays (Fr’GAS) as reconfigurable co-processors for workstations to produce moderate speedups for most tasks in the design process, resulting in a worthwhile overall design process speedup at low cost and allowing algorithm upgrades with no hardware modification. The use of FPGAS as hardware accelerators is reviewed and then achievable speedups are predicted for logic simulation and VLSI design rule checking tasks for various FPGA co-processor arrangements

    An FPGA Architecture and CAD Flow Supporting Dynamically Controlled Power Gating

    Get PDF
    © 2015 IEEE.Leakage power is an important component of the total power consumption in field-programmable gate arrays (FPGAs) built using 90-nm and smaller technology nodes. Power gating was shown to be effective at reducing the leakage power. Previous techniques focus on turning OFF unused FPGA resources at configuration time; the benefit of this approach depends on resource utilization. In this paper, we present an FPGA architecture that enables dynamically controlled power gating, in which FPGA resources can be selectively powered down at run-time. This could lead to significant overall energy savings for applications having modules with long idle times. We also present a CAD flow that can be used to map applications to the proposed architecture. We study the area and power tradeoffs by varying the different FPGA architecture parameters and power gating granularity. The proposed CAD flow is used to map a set of benchmark circuits that have multiple power-gated modules to the proposed architecture. Power savings of up to 83% are achievable for these circuits. Finally, we study a control system of a robot that is used in endoscopy. Using the proposed architecture combined with clock gating results in up to 19% energy savings in this application

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized
    • 

    corecore