96,866 research outputs found

    Putting time into proof outlines

    Get PDF
    A logic for reasoning about timing of concurrent programs is presented. The logic is based on proof outlines and can handle maximal parallelism as well as resource-constrained execution environments. The correctness proof for a mutual exclusion protocol that uses execution timings in a subtle way illustrates the logic in action

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    Interfacing to Time-Triggered Communication Systems

    Get PDF
    Time-triggered communication facilitates the construction of multi-component real-time systems whose components are in control of their temporal behavior. However, the interface of a time-triggered communication system has to be accessed with care, to avoid that the temporal independence of components gets lost. This paper shows two interfacing strategies, one for asynchronous interface access (in two variants, one being the new Rate-Bounded Non-Blocking Communication protocol) and one for time-aware, synchronized interface access, that allow components to maintain temporal independence. The paper describes and compares the interfacing strategies.Final Accepted Versio

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    The notion of Timed Registers and its application to Indulgent Synchronization

    Get PDF
    A new type of shared object, called timed register, is proposed and used to design indulgent timing-based algorithms.A timed register generalizes the notion of an atomic register as follows: if a process invokes two consecutive operations on the same timed register which are a read followed by a write, then the write operation is executed only if it is invoked at most d time units after the read operation, where d is defined as part of the read operation. In this context, a timing-based algorithm is an algorithm whose correctness relies on the existence of a bound Δ\Delta such that any pair of consecutive constrained read and write operations issued by the same process on the same timed register are separated by at most Δ\Delta time units. An indulgent algorithm is an algorithm that always guarantees the safety properties, and ensures the liveness property as soon as the timing assumptions are satisfied. The usefulness of this new type of shared object is demonstrated by presenting simple and elegant indulgent timing-based algorithms that solve the mutual exclusion, \ell-exclusion, adaptive renaming, test&set, and consensus problems. Interestingly, timed registers are universal objects in systems with process crashes and transient timing failures (i.e., they allow building any concurrent object with a sequential specification). The paper also suggests connections with schedulers and contention managers
    corecore