731 research outputs found

    Multi-carrier code division multiple access

    Get PDF

    Multi-user synchronisation in ad-hoc OFDM-based wireless personal area networks

    Get PDF
    In this paper, a procedure for dealing with the multi-user synchronisation problem in Orthogonal Frequency Division Multiple Access (OFDMA)-based systems for ad hoc environments is proposed and analysed. We show with this novel approach that it is possible to re-use much of the already extent literature for single-user synchronisation in OFDM and apply it to multi-user ad hoc scenarios. Also a distributed version of the procedure is proposed in order to fairly share out the power consumption among all the devices. The proposed procedure makes use of higher layer capabilities in a cross-layer design and it does not incur too much complexity or power. This issue is specially critical in wireless heterogeneous ad hoc networks where devices can be very limited in terms of transmission and/or computational power.Publicad

    Synchronisation Issues in Non-coherent MIMO Systems

    No full text
    In this article, we identify some of the key problems that may be encountered when designing Non-Coherent (NC) Multiple-Input Multiple-Output (MIMO) DownLink (DL) synchronisation schemes for communicating over multi-path fading channels. Our main objectives are to illustrate the information theoretic features and to provide design guidelines for the initial synchronisation of NC MIMO systems. We conclude by outlining the relationships between the beneficial and detrimental design factors

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-complexity time-domain channel estimation for OFDM systems

    Full text link

    Single and entangled photon manipulation for photonic quantum technologies

    Get PDF
    Photonic quantum technologies that harness the fundamental laws of quantum physics open the possibility of developing quantum computing and communication that could show unprecedented computational power on specific problems and unconditional information security, respectively. However, the lack of high-efficiency single-photon sources and integrated photonic circuits that can generate, manipulate and analyse entanglement states are the major hurdles to demonstrate the quantum advantages. The potential solutions are clearly explained in this thesis. Chapter 1 provides a brief overview that explains the theme of each chapter. Chapter 2 emphasises the importance of a high-efficiency single-photon source and an integrated time-bin entanglement chip, after explaining the advantages of photonic quantum computing and communication over their classical counterparts. In Chapter 3, three different temporal multiplexing schemes are experimentally demonstrated as the potential solutions to build a high-efficiency single-photon source. Chapter 3 also identifies the potential limitations of temporal multiplexing with high repetition rate. In Chapter 4, the linear processing circuits and nonlinear photon source are separately demonstrated in a low-loss double-stripe silicon nitride waveguide. In the final section of Chapter 4, an integrated silicon nitride time-bin entanglement chip that combines linear processing circuits and nonlinear photon sources is demonstrated as a potential solution to build a robust, scalable and cost-efficient quantum network in the real world. After a succinct summarisation, the final chapter briefly discusses the promising strategies and platforms to build an integrated high-efficiency single-photon source and an integrated quantum node with broad bandwidth and long storage time

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT
    • 

    corecore