50,201 research outputs found

    Timing modeling and optimization under the transmission line model

    Full text link

    Impact of Forecast Errors on Expansion Planning of Power Systems with a Renewables Target

    Full text link
    This paper analyzes the impact of production forecast errors on the expansion planning of a power system and investigates the influence of market design to facilitate the integration of renewable generation. For this purpose, we propose a stochastic programming modeling framework to determine the expansion plan that minimizes system-wide investment and operating costs, while ensuring a given share of renewable generation in the electricity supply. Unlike existing ones, this framework includes both a day-ahead and a balancing market so as to capture the impact of both production forecasts and the associated prediction errors. Within this framework, we consider two paradigmatic market designs that essentially differ in whether the day-ahead generation schedule and the subsequent balancing re-dispatch are co-optimized or not. The main features and results of the model set-ups are discussed using an illustrative four-node example and a more realistic 24-node case study

    On the Behavioral Modeling of Integrated Circuit Output Buffers

    Get PDF
    The properties of common behavioral macromodels for single ended CMOS integrated circuits output buffers are discussed with the aim of providing criteria for an effective use of possible modeling options

    Impact of Equipment Failures and Wind Correlation on Generation Expansion Planning

    Full text link
    Generation expansion planning has become a complex problem within a deregulated electricity market environment due to all the uncertainties affecting the profitability of a given investment. Current expansion models usually overlook some of these uncertainties in order to reduce the computational burden. In this paper, we raise a flag on the importance of both equipment failures (units and lines) and wind power correlation on generation expansion decisions. For this purpose, we use a bilevel stochastic optimization problem, which models the sequential and noncooperative game between the generating company (GENCO) and the system operator. The upper-level problem maximizes the GENCO's expected profit, while the lower-level problem simulates an hourly market-clearing procedure, through which LMPs are determined. The uncertainty pertaining to failures and wind power correlation are characterized by a scenario set, and their impact on generation expansion decisions are quantified and discussed for a 24-bus power system

    A Link-based Mixed Integer LP Approach for Adaptive Traffic Signal Control

    Full text link
    This paper is concerned with adaptive signal control problems on a road network, using a link-based kinematic wave model (Han et al., 2012). Such a model employs the Lighthill-Whitham-Richards model with a triangular fundamental diagram. A variational type argument (Lax, 1957; Newell, 1993) is applied so that the system dynamics can be determined without knowledge of the traffic state in the interior of each link. A Riemann problem for the signalized junction is explicitly solved; and an optimization problem is formulated in continuous-time with the aid of binary variables. A time-discretization turns the optimization problem into a mixed integer linear program (MILP). Unlike the cell-based approaches (Daganzo, 1995; Lin and Wang, 2004; Lo, 1999b), the proposed framework does not require modeling or computation within a link, thus reducing the number of (binary) variables and computational effort. The proposed model is free of vehicle-holding problems, and captures important features of signalized networks such as physical queue, spill back, vehicle turning, time-varying flow patterns and dynamic signal timing plans. The MILP can be efficiently solved with standard optimization software.Comment: 15 pages, 7 figures, current version is accepted for presentation at the 92nd Annual Meeting of Transportation Research Boar

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio
    • 

    corecore