28 research outputs found

    Recent Progress in CdTe and CdZnTe Detectors

    Get PDF
    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and Gamma-ray detection. The high atomic number of the materials (Z_{Cd} =48, Z_{Te} =52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (Eg ~ 1.5 eV) allows us to operate the detector at room temperature. However, a considerable amount of charge loss in these detectors produces a reduced energy resolution. This problem arises due to the low mobility and short lifetime of holes. Recently, significant improvements have been achieved to improve the spectral properties based on the advances in the production of crystals and in the design of electrodes. In this overview talk, we summarize (1) advantages and disadvantages of CdTe and CdZnTe semiconductor detectors and (2) technique for improving energy resolution and photopeak efficiencies. Applications of these imaging detectors in future hard X-ray and Gamma-ray astronomy missions are briefly discussed.Comment: 9 pages, 15 figures, Based on the invited overview talk at 2000 IEEE Nuclear Science Symposium (Lyon, France). will appear in IEEE N

    Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Get PDF
    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors

    TCAD simulation studies of novel geometries for CZT ring-drift detectors

    Get PDF
    In this work, technology computer-aided design (TCAD) simulation results of new CZT ring-drift detector geometries are presented. The physics model was developed and validated against the results from an existing device which had been comprehensively characterised at x-ray wavelengths. The model was then applied to new detector geometries and a systematic study of the parameters influencing charge collection performed. A comparison between one- two- and three-ring circle and semi-rectangular (or squircle) geometries is presented. In was found that charge collection with the squircle ring configuration was systematically better than the circular configuration and extends approximately m further from the collecting anode. In addition, a two-ring geometry device is shown to collect charge m and m further from the anode when compared to one- and three- ring geometries, respectively. Based on these results, we derive an optimum configuration which potentially can be multiplied on larger crystals, offering an increased charge collection volume without compromising energy resolution

    Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for Prompt Gamma-Ray Measurements in BNCT

    Get PDF
    Recently, new high-resolution cadmium–zinc–telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94%7Li nuclides from the10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra from10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Italy)

    Development of CdZnTe detector systems for space applications

    Get PDF

    Development of a prototype detector for MeV gamma-ray detection on a CubeSat

    Get PDF
    Trotz der beeindruckenden Fortschritte, die die Röntgen- und Gammastrahlenobservatorien in den letzten Jahrzehnten erzielt haben, ist der Energiebereich zwischen 200 keV und 50 MeV nach wie vor kaum erforscht. Diese Lücke, die in der Literatur oft als ``MeV-Lücke'' bezeichnet wird, ist nicht auf einen Mangel an überzeugender Wissenschaft zurückzuführen, sondern auf technische Herausforderungen und Nachweisschwierigkeiten, die mit MeV-Beobachtungen einhergehen. COMPTEL an Bord von CGRO (1991-2000) war das letzte Teleskop, das eine vollständige Durchmusterung des MeV-Himmels mit einer relativ bescheidenen Empfindlichkeit durchführte. Für die Zukunft sind zahlreiche Missionen vorgeschlagen worden, insbesondere AMEGO, die die Leistung von COMPTEL um mindestens eine Größenordnung verbessern sollen. Der Zeitrahmen für die Entwicklung, den Aufbau und den Start solch großer Missionen beträgt jedoch etwa 10 Jahre und ist mit erheblichen Kosten verbunden. In diesem Szenario könnte ein viel kleinerer Satellit, der sich der neuen Welle von schnellen, relativ kostengünstigen Weltraumforschungsmissionen anschließt, die durch CubeSats ermöglicht werden, in kürzerer Zeit rentabel sein. In dieser Arbeit werden die Verfügbarkeit und die Leistung eines Compton-Teleskops auf der Grundlage des CubeSat-Standards, genannt MeVCube, untersucht. Die Auswirkungen der Materialwahl und verschiedener CubeSat-Nutzlasten wurden durch Simulationen bewertet. Trotz der begrenzten Größe kann selbst ein kleines Teleskop, das auf einem CubeSat fliegt, den Energiebereich von Hunderten von keV bis zu einigen MeV mit einer Empfindlichkeit abdecken, die mit der der letzten Generation von Großmissionen wie COMPTEL und INTEGRAL vergleichbar ist. Es wurden auch experimentelle Messungen an Cadmium-Zink-Tellurid-Halbleiterdetektoren und einer für den Weltraumbetrieb geeigneten Ausleseelektronik mit geringem Stromverbrauch durchgeführt.Despite the impressive progresses achieved both by X-ray and gamma-ray observatories in the last decades, the energy range between 200 keV and 50 MeV remains poorly explored. This gap in coverage, often referred in literature as the ``MeV gap'', is not due to lack of compelling science, but instead to technical challenges and detection difficulties that comes with MeV observations. COMPTEL, on-board CGRO (1991-2000), was the last telescope to accomplish a complete survey of the MeV-sky with a relatively modest sensitivity. Many missions have been proposed for the future, most notably AMEGO, aiming to improve COMPTEL's performance by at least one order of magnitude. However, the timescale for development, assembly and launch of such large missions is around 10 years, with substantial costs. Looking at this scenario, a much smaller satellite, joining the new wave of rapid, relatively inexpensive space science missions enabled by CubeSats, may be profitable on a shorter time-scale. This thesis evaluates the availability and performance of a Compton telescope based on the CubeSat standard, named MeVCube. The impact of material choice and different CubeSat payloads has been evaluated through simulations. Despite the limited size, even a small telescope flying on a CubeSat can cover the energy range from hundreds of keV up to few MeVs with a sensitivity comparable to that of the last generation of large-scale missions like COMPTEL and INTEGRAL. Experimental measurements on Cadmium-Zinc-Telluride semiconductor detectors and low-power read-out electronics suitable for space operation have been performed as well

    Crystal growth & technology, device fabrication, and material properties of Cd(Zn)Te for radiation detector applications

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de Materiales. Fecha de lectura: 18-04-201

    Characterization of Mechanically Cooled High Purity Germanium (HPGe) Detectors at Elevated Temperatures

    Get PDF
    High resolution gamma spectroscopy is a tool used in nuclear security applications due to its achievable energy resolution and associated ability to identify special nuclear material. This identification ability is achieved by identifying the characteristic gamma-rays of a material. The challenges that have confronted industry concerning the use of hand-held high purity germanium (HPGe) in homeland security applications have centered on weight, geometry, and cool-down time. Typical liquid nitrogen cooled detectors ranging in size from 10% to 150% detectors will cool down sufficiently within 2-6 hours of filling. The cool-down time achieved in this research ranges from 45 min on the smallest detector to six hours on the largest 180 cm3 detector; which is consistent with typical hand held HPGe devices. The weight and package geometry for HPGe-based designs is driven by the need to cool the HPGe detector to cryogenic temperatures. This is due to small bandgap (~0.7 eV) of HPGe. Liquid nitrogen or mechanical cooling is required to achieve such temperatures. This dissertation presents work performed to characterize energy resolution performance as a function of temperature in a new mechanically cooled HPGe detector design based upon a split-Stirling cryocooler. This research also quantifies the microphonic noise contribution from this cryocooler. Measurements have been taken on detector sizes ranging from 6.75 cubic centimeters to 180 cubic centimeters. Focus has been placed on determining volume dependence on energy resolution at elevated temperatures. Microphonic noise contribution from the cooler has also been studied over the same temperature range. This energy resolution degradation was most pronounced at low temperatures (\u3c110ºKelvin) and has been shown to be a function of cooler drive voltage. This research shows that in some cases the energy resolution degradation observed can be as much as 1.5 kiloelectronvolts. This differs from previous studies where detectors were liquid nitrogen cooled. This research is also an expansion of previous research in that the size of the detectors studied is larger than previous. Previously identified research is limited to 75 cubic centimeter volume detectors whereas detectors up to 180 cubic centimeters will be reviewed

    Thin film AlSb carrier transport properties and room temperature radiation response

    Get PDF
    Theoretical predictions for AlSb material properties have not been realized using bulk growth methods. This research was motivated by advances in molecular beam epitaxial (MBE) growth technology to produce high-quality thin-film AlSb for the purpose of evaluating transport properties and suitability for radiation detection. Simulations using MCNP5 were performed to benchmark an existing silicon surface barrier detector and to predict ideal AlSb detector behavior, with the finding that AlSb should have improved detection efficiency due to the larger atomic number of Sb compared with Si. GaSb diodes were fabricated by both homoepitaxial MBE and ion implantation methods in order to determine the effect on the radiation detection performance. It was found that the radiation response for the MBE grown GaSb diodes was very uniform, whereas the ion-implanted GaSb diodes exhibited highly variable spectral behavior. Two sets of AlSb heterostructures were fabricated by MBE methods; one for a Hall doping study and the other for a radiation response study. The samples were characterized for material quality using transmission electron microscopy (TEM), Nomarski imaging, atomic force microscopy (AFM), x-ray diffraction (XRD), I-V curve analysis, and Hall effect measurements. The Hall study samples were grown on semi-insulating (SI) GaAs substrates and contained a thin GaAs layer on top to protect the AlSb from oxygen. Doping for the AlSb layer was achieved using GaTe and Be for n- and p-type conductivity, respectively, with intended doping densities ranging from 1015 to 1017 cm-3. Results for net carrier concentration ranged 2×109 to 1×1017 cm-3, 60 to 3000 cm2/Vs for mobility, and 2 to 106 Ω-cm for resistivity, with the undoped AlSb samples presenting the best values. The radiation detector samples were designed to be PIN diodes, with undoped AlSb sandwiched between n-type GaAs substrate and p-type GaSb as a conductive oxygen-protective layer. Energy spectra were measured from 241Am, 252Cf, and 239Pu sealed sources, with good peak resolution and signal to noise response. Both GaSb PN diodes and AlSb PIN diodes exhibited larger pulses for smaller surface area samples, in good agreement with voltage-capacitance relationships for junctions. Microwave photoconductive decay (MW-PCD) measurements were performed on the Hall samples to determine the effect of doping on the minority carrier lifetime. Contrary to expectations, more heavily doped samples presented with longer decay times, some as large as hundreds of microseconds. There also appeared to be multiple exponential decay curves, potentially associated with different decay mechanisms. Collectively, the studies presented here reinforce the predicted nature of AlSb with respect to radiation detection
    corecore