901 research outputs found

    A static scheduling approach to enable safety-critical OpenMP applications

    Get PDF
    Parallel computation is fundamental to satisfy the performance requirements of advanced safety-critical systems. OpenMP is a good candidate to exploit the performance opportunities of parallel platforms. However, safety-critical systems are often based on static allocation strategies, whereas current OpenMP implementations are based on dynamic schedulers. This paper proposes two OpenMP-compliant static allocation approaches: an optimal but costly approach based on an ILP formulation, and a sub-optimal but tractable approach that computes a worst-case makespan bound close to the optimal one.This work is funded by the EU projects P-SOCRATES (FP7-ICT-2013-10) and HERCULES (H2020/ICT/2015/688860), and the Spanish Ministry of Science and Innovation under contract TIN2015-65316-P.Peer ReviewedPostprint (author's final draft

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Platform-based Plug and Play of Automotive Safety Features - Challenges and Directions

    Get PDF
    Optional software-based features are increasingly becoming an important cost driver in automotive systems. These include features pertaining to active safety, infotainment, etc. Currently, these optional features are integrated into the vehicles at the factory during assembly. This severely restricts the flexibility of the customer to select and use features on-demand and therefore, the customer will either have to be satisfied with an available set of feature options or pre-order a car with the required features from the manufacturer resulting in considerable delay. In order to increase flexibility and reduce the delay, it is necessary to provide the option to configure the vehicle on-demand at the dealership or remotely. In this paper, we present our vision and challenges involved in developing a platform infrastructure that allows on-demand deployment of automotive safety features and ensures their correct execution
    • …
    corecore