623 research outputs found

    A Novel estimation and Correction of Channel errors in LTE SYSTEMS

    Get PDF
    The increase in the number of RF devices and the requirement for large data rates places major role in increasing demand on bandwidth. This necessitates the need for RF communication systems with increased throughput and capacity. MIMO-OFDM is one way to meet this basic requirement. OFDM is used in many (WCD) wireless communication devices and offers high spectral efficiency and resilience to multipath channel effects. Though OFDM is very sensitive to synchronization errors, it makes the task of channel equalization simple. MIMO utilize the multiple antennas to increase throughput without increasing transmitter power or bandwidth. This project presents an introduction to the (MPC) multipath fading channel and describes an appropriate channel model. Many modulation schemes are presented (i.e. BPSK, QPSK, QAM) that are often used in Conjunction with OFDM. Mathematical modeling and analysis of OFDM are given along with a discrete implementation common to modern RF communication systems. Synchronization errors are modeled mathematically and simulated, as well as techniques to estimate and correct those errors at the receiver accurately

    WIMAX 802.16 PHYSICAL LAYER IMPLEMENTATION AND WIMAX COVERAGE AND PLANNING.

    Get PDF
    Over the last decade, the impact of wireless communication on the way we live and carry out business has been surpassed only by impact of the internet. But wireless communications is still in its infancy and the next stage of its development will be supplementing or replacing network infrastructure that was traditionally wired. The advent and adoption of the computer and the myriad software packages available for it offered the ability to generate a new wave of communication combining art, pictures, music and words into a targeted multimedia presentation. These presentations are large so that is requires higher bandwidth transmission facilities. Coupling this with the need for mobility, the solution would be wireless data delivery putting in consideration the bandwidth request. WiMAX technology is based on the IEEE 802.16 standard, it was only recently when the first IEEE 802.16 based equipment broadband began to enter the market. The additional spectrum, bandwidth and throughout capabilities of 802.16 will remarkably improve wireless data delivery and should allows even more wireless data service areas to be deployed economically. In this Final Year Project, a study about the IEEE 802.16 standard and mainly concentrate on the 802.16 PHY Layer behaviors was performed. A Simulink based model for the 802.16 PHY Layer was built for simulation and performance evaluation of WiMAX. MATLA

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Effect of Synchronization error in Multi Carrier systems

    Get PDF
    Communications as an important aspect life plays a major role in our daily routine. With the progress in age and growth in its demand, there has been rapid development in the field of communications. Analog signals which were used to send information previously are now sent in digital domain in a much wider range. For better performance in terms of transmissions, single carriers are replaced by multi-carriers Some of the methods that use multi-carriers for transmission are Orthogonal Division Frequency Multiplexing (OFDM), Code Division Multiple Access (CDMA). In OFDM system, orthogonally placed subcarriers are used to carry the data from the transmitter to the receiver. The guard band present in this system avoids the system from being effected by Inter Symbol Interference (ISI). However, Doppler Shifts and delays induced in the channel due to various reasons impose frequency offset to the carrier. This results in an error in the Synchronization between the transmitter and receiver. This leads to the loss of orthogonally between the subcarriers and thus degrades the performance of the OFDM system.In this project, the Synchronization error in OFDM is discussed in particular and a technique of estimating the Carrier Frequency Offset (CFO) using Null Subcarriers is studied

    SYNCHRONIZATION AND RESOURCE ALLOCATION IN DOWNLINK OFDM SYSTEMS

    Get PDF
    The next generation (4G) wireless systems are expected to provide universal personal and multimedia communications with seamless connection and very high rate transmissions and without regard to the users’ mobility and location. OFDM technique is recognized as one of the leading candidates to provide the wireless signalling for 4G systems. The major challenges in downlink multiuser OFDM based 4G systems include the wireless channel, the synchronization and radio resource management. Thus algorithms are required to achieve accurate timing and frequency offset estimation and the efficient utilization of radio resources such as subcarrier, bit and power allocation. The objectives of the thesis are of two fields. Firstly, we presented the frequency offset estimation algorithms for OFDM systems. Building our work upon the classic single user OFDM architecture, we proposed two FFT-based frequency offset estimation algorithms with low computational complexity. The computer simulation results and comparisons show that the proposed algorithms provide smaller error variance than previous well-known algorithm. Secondly, we presented the resource allocation algorithms for OFDM systems. Building our work upon the downlink multiuser OFDM architecture, we aimed to minimize the total transmit power by exploiting the system diversity through the management of subcarrier allocation, adaptive modulation and power allocation. Particularly, we focused on the dynamic resource allocation algorithms for multiuser OFDM system and multiuser MIMO-OFDM system. For the multiuser OFDM system, we proposed a lowiv complexity channel gain difference based subcarrier allocation algorithm. For the multiuser MIMO-OFDM system, we proposed a unit-power based subcarrier allocation algorithm. These proposed algorithms are all combined with the optimal bit allocation algorithm to achieve the minimal total transmit power. The numerical results and comparisons with various conventional nonadaptive and adaptive algorithmic approaches are provided to show that the proposed resource allocation algorithms improve the system efficiencies and performance given that the Quality of Service (QoS) for each user is guaranteed. The simulation work of this project is based on hand written codes in the platform of the MATLAB R2007b

    A frame synchronization and frequency offset estimation algorithm for OFDM system and its analysis

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is a parallel transmission scheme for transmitting data at very high rates over time dispersive radio channels. In an OFDM system, frame synchronization and frequency offset estimation are extremely important for maintaining orthogonality among the subcarriers. In this paper, for a preamble having two identical halves in time, a timing metric is proposed for OFDM frame synchronization. The timing metric is analyzed and its mean values at the preamble boundary and in its neighborhood are evaluated, for AWGN and for frequency selective channels with specified mean power profile of the channel taps, and the variance expression is derived for AWGN case. Since the derivation of the variance expression for frequency selective channel case is tedious, we used simulations to estimate the same. Based on the theoretical value of the mean and estimate of the variance, we suggest a threshold for detection of the preamble boundary and evaluating the probability of false and correct detections. We also suggest a method for a threshold selection and the preamble boundary detection in practical applications. A simple and computationally efficient method for estimating fractional and integer frequency offset, using the same preamble, is also described. Simulations are used to corroborate the results of the analysis. The proposed method of frame synchronization and frequency offset estimation is applied to the downlink synchronization in OFDM mode of wireless metropolitan area network (WMAN) standard IEEE 802.16-2004, and its performance is studied through simulations
    corecore