1,280 research outputs found

    Reconciling real and stochastic time: The need for probabilistic refinement

    Get PDF
    We conservatively extend anACP-style discrete-time process theorywith discrete stochastic delays. The semantics of the timed delays relies on time additivity and time determinism, which are properties that enable us to merge subsequent timed delays and to impose their synchronous expiration. Stochastic delays, however, interact with respect to a so-called race condition that determines the set of delays that expire first, which is guided by an (implicit) probabilistic choice. The race condition precludes the property of time additivity as the merger of stochastic delays alters this probabilistic behavior. To this end, we resolve the race condition using conditionally- distributed unit delays. We give a sound and ground-complete axiomatization of the process theory comprising the standard set of ACP-style operators. In this generalized setting, the alternative composition is no longer associative, so we have to resort to special normal forms that explicitly resolve the underlying race condition. Our treatment succeeds in the initial challenge to conservatively extend standard time with stochastic time. However, the 'dissection' of the stochastic delays to conditionally-distributed unit delays comes at a price, as we can no longer relate the resolved race condition to the original stochastic delays. We seek a solution in the field of probabilistic refinements that enable the interchange of probabilistic and non deterministic choices.Fil: Markovski, J.. Technische Universiteit Eindhoven; Países BajosFil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baeten, J. C. M.. Technische Universiteit Eindhoven; Países Bajos. Centrum Wiskunde & Informatica; Países BajosFil: De Vink, E. P.. Technische Universiteit Eindhoven; Países Bajos. Centrum Wiskunde & Informatica; Países Bajo

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    A programming-language extension for distributed real-time systems

    Get PDF
    In this paper we propose a method for extending programming languages that enables the specification of timing properties of systems. The way time is treated is not language specific and the extension can therefore be included in many existing programming languages. The presented method includes a view on the system development process. An essential feature is that it enables the construction of (hard) real-time programs that may be proven correct independently of the properties of the machines that are used for their execution. It therefore provides a similar abstraction from the execution platform as is normal for non-real-time languages. The aim of this paper is to illustrate the method and demonstrate its applicability to actual real-time problems. To this end we define a simple programming language that includes the timing extension. We present a formal semantics for a characteristic part of the language constructs and apply formal methods to prove the correctness of a small example program. We consider in detail a larger example, namely the mine-pump problem known from the literature. We construct a real-time program for this problem and describe various ways to map the program to an implementation for different platforms

    Modelling MAC-Layer Communications in Wireless Systems

    Get PDF
    We present a timed process calculus for modelling wireless networks in which individual stations broadcast and receive messages; moreover the broadcasts are subject to collisions. Based on a reduction semantics for the calculus we define a contextual equivalence to compare the external behaviour of such wireless networks. Further, we construct an extensional LTS (labelled transition system) which models the activities of stations that can be directly observed by the external environment. Standard bisimulations in this LTS provide a sound proof method for proving systems contextually equivalence. We illustrate the usefulness of the proof methodology by a series of examples. Finally we show that this proof method is also complete, for a large class of systems

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Decision Taking for Selling Thread Startup

    Full text link
    Decision Taking is discussed in the context of the role it may play for a selling agent in a search market, in particular for agents involved in the sale of valuable and relatively unique items, such as a dwelling, a second hand car, or a second hand recreational vessel. Detailed connections are made between the architecture of decision making processes and a sample of software technology based concepts including instruction sequences, multi-threading, and thread algebra. Ample attention is paid to the initialization or startup of a thread dedicated to achieving a given objective, and to corresponding decision taking. As an application, the selling of an item is taken as an objective to be achieved by running a thread that was designed for that purpose

    Forgetting the Time in Timed Process Algebra

    Full text link
    In this paper, we propose the notion of partial time abstraction for timed process algebras, which introduces the possibility to abstract away parts of the timing of system behaviour. Adding this notion leads to so-called partially timed process algebras and partially timed labelled transition systems. We describe these notions, and generalise timed branching bisimilarity to partially timed branching bisimilarity, allowing the comparison of systems with partial timing. Finally, with several examples and a case study, we demonstrate how partial time abstraction can be a useful modelling technique for timed models, which can lead to rigorous minimisations of state spaces

    Silent steps in transition systems and Markov chains

    Get PDF

    Embedding real-time in stochastic process algebras

    Get PDF
    We present a stochastic process algebra including immediate actions, deadlock and termination, and explicit stochastic delays, in the setting of weak choice between immediate actions and passage of time. The operational semantics is a spent time semantics, avoiding explicit clocks. We discuss the embedding of weak-choice real-time process theories and analyze the behavior of parallel composition in the weak choice framework

    A Hierarchical Petri Net Model for SMIL Documents

    Get PDF
    • …
    corecore