610 research outputs found

    Modeling of quad-station module cluster tools using petri nets

    Get PDF
    The semiconductor industry is highly competitive, and with the recent chip shortage, the throughput of wafers has become more important than ever. One of the tools that the industry has deployed is to use of quad-station modules instead of the traditional single-station modules that allow for higher throughput and better wafer consistency by processing multiple wafers at the same time and distributing work. The industry trend is to use multiple transfer chamber robots to stack the quad-station modules in a series, particularly for etch products. In this work, the quad-station cluster tool wafer movement is modeled by using Petri net as a process-bounded system. The system analysis and simulations are performed by using timed and colored Petri nets. The results are useful to deepen our understanding of the discrete-event dynamics of quad-station module cluster tools and offer the highly needed insight into their efficient and deadlock-free operation

    Multiform Adaptive Robot Skill Learning from Humans

    Full text link
    Object manipulation is a basic element in everyday human lives. Robotic manipulation has progressed from maneuvering single-rigid-body objects with firm grasping to maneuvering soft objects and handling contact-rich actions. Meanwhile, technologies such as robot learning from demonstration have enabled humans to intuitively train robots. This paper discusses a new level of robotic learning-based manipulation. In contrast to the single form of learning from demonstration, we propose a multiform learning approach that integrates additional forms of skill acquisition, including adaptive learning from definition and evaluation. Moreover, going beyond state-of-the-art technologies of handling purely rigid or soft objects in a pseudo-static manner, our work allows robots to learn to handle partly rigid partly soft objects with time-critical skills and sophisticated contact control. Such capability of robotic manipulation offers a variety of new possibilities in human-robot interaction.Comment: Accepted to 2017 Dynamic Systems and Control Conference (DSCC), Tysons Corner, VA, October 11-1

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    A Petri-Net-Based Scheduling Strategy for Dual-Arm Cluster Tools With Wafer Revisiting

    Get PDF
    International audienceThere are wafer fabrication processes in cluster tools that require wafer revisiting. The adoption of a swap strategy for such tools forms a 3-wafer cyclic (3-WC) period with three wafers completed in each period. It has been shown that, by such a scheduling strategy, the minimal cycle time cannot be reached for some cases. This raises a question of whether there is a scheduling method such that the performance can be improved. To answer this question, a dual-arm cluster tool with wafer revisiting is modeled by a Petri net. Based on the model, the dynamical behavior of the process is analyzed. Then, a 2-wafer cyclic (2-WC) scheduling strategy is revealed for the first time. Cycle time analysis is conducted for the proposed strategy to evaluate its performance. It shows that, for some cases, the performance obtained by a 2-WC schedule is better than that obtained by any existing 3-WC ones. Thus, they can be used to complement each other in scheduling dual-arm cluster tools with wafer revisiting. Illustrative examples are given

    Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models

    Get PDF
    A cluster tool is an integrated, envi- ronmentally isolated manufacturing system consisting of process, transport, and cassette modules, mechan- ically linked together, that is used in manufacturing of semiconductor chips. Because of high throughput requirements, cluster tools perform a number of activ- ities concurrently. Petri nets are formal models devel- oped specifically for representation of concurrent ac- tivities and for their coordination. In timed nets, the durations of modeled activities are represented by oc- currence times associated with transitions, and this allows to study the performance characteristics of the modeled systems. Since cluster tools can be quite complex, a system- atic approach to generating net models is proposed. Net models derived in such a way have modular struc- ture, which is used to determine model’s steady–state performance on the basis of net invariants, without the exhaustive reachability analysis. Performance charac- teristics are obtained in symbolic form, in terms of modeling parameters, so different variants of cluster tools can be evaluated and compared very efficiently, without repetitive model analyses

    Extracting Petri Modules From Large and Legacy Petri Net Models

    Get PDF
    Petri nets, even though very useful for modeling of discrete event systems, suffer from some weaknesses such as huge size, huge state space, and slow in simulation. Due to the huge state space, model checking a Petri net is difficult. Also, due to the slowness in simulation, discrete-timed Petri nets cannot be used for real-time applications. Thus, modular Petri nets are suggested as a way of overcoming these difficulties. In modular Petri nets, modules are designed, developed, and run independently, and the modules communicate with each other via inter-modular connectors. This approach is suggested for developing newer Petri net models. However, there exists a large number of Petri net models of real-life systems, and these legacy models are enormous and non-modular. And, these models cannot be discarded as large amounts of time and money were spent to develop these models. This paper presents a unique algorithm for extracting modules from large and legacy Petri net models. The algorithm extracts modules (known as “Petri modules”) that are well-defined for inter-modular collaboration. Also, the extraction method preserves the structural properties. The goal of the paper is to introduce a methodology by which Petri nets can be moved to a new level in which a modular Petri net model can be made of Petri modules. The Petri modules are independent and can be hosted on different computers. These modules communicate via inter-modular components such as TCP/IP sockets. Since Petri modules are compact, also run faster, thus become suitable for supervisory control of real-time systems.publishedVersio

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Modeling and formal verification of probabilistic reconfigurable systems

    Get PDF
    In this thesis, we propose a new approach for formal modeling and verification of adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future technological systems, such as flight control systems, vehicle electronic systems, and manufacturing systems. In order to meet user and environmental requirements, such a dynamic reconfigurable system has to actively adjust its configuration at run-time by modifying its components and connections, while changes are detected in the internal/external execution environment. On the other hand, these changes may violate the memory usage, the required energy and the concerned real-time constraints since the behavior of the system is unpredictable. It might also make the system's functions unavailable for some time and make potential harm to human life or large financial investments. Thus, updating a system with any new configuration requires that the post reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES formalism for the optimal functional and temporal specification of probabilistic reconfigurable systems under resource constraints. It enables the optimal specification of a probabilistic, energetic and memory constraints of such a system. To formally verify the correctness and the safety of such a probabilistic system specification, and the non-violation of its properties, an automatic transformation from GR-TNCES models into PRISM models is introduced. Moreover, a new approach XCTL is also proposed to formally verify reconfigurable systems. It enables the formal certification of uncompleted and reconfigurable systems. A new version of the software ZIZO is also proposed to model, simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent the energy and memory resources violation. It was also used to optimize energy consumption of an automotive skid conveyor.In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen, wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches, adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der internen oder externen Ausführungsumgebung erkannt werden (probabilistisch). Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das Aktualisieren eines Systems mit einer neuen Konfiguration, dass das rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche Spezifikation probabilistischer rekonfigurierbarer Systeme unter Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die formale Verifikation (durch eine automatische Transformation nach PRISM) umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    Control of Discrete Event Systems with Respect to Strict Duration: Supervision of an Industrial Manufacturing Plant

    Get PDF
    26 pagesInternational audienceIn this paper, we propose a (max,+)-based method for the supervi- sion of discrete event systems subject to tight time constraints. Systems under consideration are those modelled as timed event graphs and repre- sented with linear (max,+) state equations. The supervision is addressed by looking for solutions of constrained state equations associated with timed event graph models. These constrained state equations are derived by reducing duration constraints to elementary constraints whose con- tributions are injected in the system's state equations. An example for supervisor synthesis is given for an industrial manufacturing plant subject to a strict temporal constraint, the thermal treatment of rubber parts for the automotive industries. Supervisors are calculated and classified ac- cording to their performance, considering their impact on the production throughput
    corecore