41 research outputs found

    A Hierarchical Petri Net Model for SMIL Documents

    Get PDF

    Processing Structured Hypermedia : A Matter of Style

    Get PDF
    With the introduction of the World Wide Web in the early nineties, hypermedia has become the uniform interface to the wide variety of information sources available over the Internet. The full potential of the Web, however, can only be realized by building on the strengths of its underlying research fields. This book describes the areas of hypertext, multimedia, electronic publishing and the World Wide Web and points out fundamental similarities and differences in approaches towards the processing of information. It gives an overview of the dominant models and tools developed in these fields and describes the key interrelationships and mutual incompatibilities. In addition to a formal specification of a selection of these models, the book discusses the impact of the models described on the software architectures that have been developed for processing hypermedia documents. Two example hypermedia architectures are described in more detail: the DejaVu object-oriented hypermedia framework, developed at the VU, and CWI's Berlage environment for time-based hypermedia document transformations

    Processing Structured Hypermedia - A Matter of Style

    Get PDF
    Vliet, J.C. van [Promotor]Eliens, A. [Copromotor

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Spatio-temporal Validation of Multimedia Documents

    No full text
    International audienceA multimedia document authoring system should provide analysis and validation tools that help authors find and correct mistakes before document deployment. Although very useful, multimedia validation tools are not often provided. Spatial validation of multimedia documents may be performed over the initial position of media items before presentation starts. However, such an approach does not lead to ideal results when media item placement changes over time. Some document authoring languages allow the definition of spatio-temporal relationships among media items and they can be moved or resized during runtime. Current validation approaches do not verify dynamic spatio-temporal relationships. This paper presents a novel approach for spatio-temporal validation of multimedia documents. We model the document state, extending the Simple Hyperme-dia Model (SHM), comprising media item positioning during the whole document presentation. Mapping between document states represent time lapse or user interaction. We also define a set of atomic formulas upon which the author's expectations related to the spatio-temporal layout can be described and analyzed

    Extensions to the SMIL multimedia language

    Get PDF
    The goal of this work has been to extend the Synchronized Multimedia Integration Language (SMIL) to study the capabilities and possibilities of declarative multimedia languages for the World Wide Web (Web). The work has involved design and implementation of several extensions to SMIL. A novel approach to include 3D audio in SMIL was designed and implemented. This involved extending the SMIL 2D spatial model with an extra dimension to support a 3D space. New audio elements and a listening point were positioned in the 3D space. The extension was designed to be modular so that it was possible to use it in conjunction with other XML languages, such as XHTML and Scalable Vector Graphics (SVG) language. Web forms are one of the key features in the Web, as they offer a way to send user data to a server. A similar feature is therefore desirable in SMIL, which currently lacks forms. The XForms language, due to its modular approach, was used to add this feature to SMIL. An evaluation of this integration was carried out as part of this work. Furthermore, the SMIL player was designed to play out dynamic SMIL documents, which can be modified at run-time and the result is immediately reflected in the presentation. Dynamic SMIL enables execution of scripts to modify the presentation. XML Events and ECMAScript were chosen to provide the scripting functionality. In addition, generic methods to extend SMIL were studied based on the previous extensions. These methods include ways to attach new input and output capabilities to SMIL. To experiment with the extensions, a Synchronized Multimedia Integration Language (SMIL) player was developed. The current final version can play out SMIL 2.0 Basic profile documents with a few additional SMIL modules, such as event timing, basic animations, and brush media modules. The player includes all above-mentioned extensions. The SMIL player has been designed to work within an XML browser called X-Smiles. X-Smiles is intended for various embedded devices, such as mobile phones, Personal Digital Assistants (PDA), and digital television set-top boxes. Currently, the browser supports XHTML, SMIL, and XForms, which are developed by the current research group. The browser also supports other XML languages developed by 3rd party open-source projects. The SMIL player can also be run as a standalone player without the browser. The standalone player is portable and has been run on a desktop PC, PDA, and digital television set-top box. The core of the SMIL player is platform-independent, only media renderers require platform-dependent implementation.reviewe

    Model-based engineering of animated interactive systems for the interactive television environment

    Get PDF
    Les interfaces graphiques étaient la plupart du temps statiques, et représentaient une succession d'états logiciels les uns après les autres. Cependant, les transitions animées entre ces états statiques font partie intégrante des interfaces utilisateurs modernes, et leurs processus de design et d'implémentations constituent un défi pour les designers et les développeurs. Cette thèse propose un processus de conception de systèmes interactifs centré sur les animations, ainsi qu'une architecture pour la définition et l'implémentation d'animations au sein des interfaces graphiques. L'architecture met en avant une approche à deux niveaux pour définir une vue haut niveau d'une animation (avec un intérêt particulier pour les objets animés, leurs propriétés à être animé et la composition d'animations) ainsi qu'une vue bas niveau traitant des aspects détaillés des animations tels que les timings et les optimisations. Concernant les spécifications formelles de ces deux niveaux, nous utilisons une approche qui facilite les réseaux de Petri orientés objets pour la conception, l'implémentation et la validation d'interfaces utilisateurs animées en fournissant une description complète et non-ambiguë de l'ensemble de l'interface utilisateur, y compris les animations. Enfin, nous décrivons la mise en pratique du processus présenté, illustré par un cas d'étude d'un prototype haute-fidélité d'une interface utilisateur, pour le domaine de la télévision interactive. Ce processus conduira à une spécification formelle et détaillée du système interactif, et incluera des animations utilisant des réseaux de Petri orientés objet (conçus avec l'outil PetShop CASE).Graphical User Interfaces used to be mostly static, representing one software state after the other. However, animated transitions between these static states are an integral part in modern user interfaces and processes for both their design and implementation remain a challenge for designers and developers. This thesis proposes a process for designing interactive systems focusing on animations, along with an architecture for the definition and implementation of animation in user interfaces. The architecture proposes a two levels approach for defining a high-level view of an animation (focusing on animated objects, their properties to be animated and on the composition of animations) and a low-level one dealing with detailed aspects of animations such as timing and optimization. For the formal specification of these two levels, we are using an approach facilitating object-oriented Petri nets to support the design, implementation and validation of animated user interfaces by providing a complete and unambiguous description of the entire user interface including animations. Finally, we describe the application of the presented process exemplified by a case study for a high-fidelity prototype of a user interface for the interactive Television domain. This process will lead to a detailed formal specification of the interactive system, including animations using object-oriented Petri nets (designed with the PetShop CASE tool)
    corecore