323 research outputs found

    Membrane Systems with Priority, Dissolution, Promoters and Inhibitors and Time Petri Nets

    Get PDF
    We continue the investigations on exploring the connection between membrane systems and time Petri nets already commenced in [4] by extending membrane systems with promoters/inhibitors, membrane dissolution and priority for rules compared to the simple symbol-object membrane system. By constructing the simulating Petri net, we retain one of the main characteristics of the Petri net model, namely, the firings of the transitions can take place in any order: we do not impose any additional stipulation on the transition sequences in order to obtain a Petri net model equivalent to the general Turing machine. Instead, we substantially exploit the gain in computational strength obtained by the introduction of the timing feature for Petri nets

    Membrane Systems and Time Petri Nets

    Get PDF
    We investigate the relationship of time Petri nets and di erent variants of membrane systems. First we show that the added feature of \time" in time Petri nets makes it possible to simulate the maximal parallel rule application of membrane systems without introducing maximal parallelism to the Petri net semantics, then we de ne local time P systems and explore how time Petri nets and the computations of local time P systems can be related

    A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    Get PDF
    http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..

    First Steps Towards a Geometry of Computation

    Get PDF
    We introduce a geometrical setting which seems promising for the study of computation in multiset rewriting systems, but could also be applied to register machines and other models of computation. This approach will be applied here to membrane systems (also known as P systems) without dynamical membrane creation. We discuss the role of maximum parallelism and further simplify our model by considering only one membrane and sequential application of rules, thereby arriving at asynchronous multiset rewriting systems (AMR systems). Considering only one membrane is no restriction, as each static membrane system has an equivalent AMR system. It is further shown that AMR systems without a priority relation on the rules are equivalent to Petri Nets. For these systems we introduce the notion of asymptotically exact computation, which allows for stochastic appearance checking in a priori bounded (for some complexity measure) computations. The geometrical analogy in the lattice Nd0 ; d 2 N, is developed, in which a computation corresponds to a trajectory of a random walk on the directed graph induced by the possible rule applications. Eventually this leads to symbolic dynamics on the partition generated by shifted positive cones C+ p , p 2 Nd0 , which are associated with the rewriting rules, and their intersections. Complexity measures are introduced and we consider non-halting, loop-free computations and the conditions imposed on the rewriting rules. Eventually, two models of information processing, control by demand and control by availability are discussed and we end with a discussion of possible future developments

    In-silico-Systemanalyse von Biopathways

    Get PDF
    Chen M. In silico systems analysis of biopathways. Bielefeld (Germany): Bielefeld University; 2004.In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways. This dissertation addresses these problems of in silico systems analysis of biopathways. We developed a software system to integrate the access to different databases, and exploited the Petri net methodology to model and simulate metabolic networks in cells. It develops a computer modeling and simulation technique based on Petri net methodology; investigates metabolic networks at a system level; proposes a markup language for biological data interchange among diverse biological simulators and Petri net tools; establishes a web-based information retrieval system for metabolic pathway prediction; presents an algorithm for metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and attempts to standardize the representation of biological pathways. Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic modeling strategy and Petri net modeling algorithm are applied to perform the processes of elements functioning and model analysis. The proposed methodology can be used for all other metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net modeling and simulation of metabolic networks are outlined. A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The concepts and terminology of the interchange format, as well as its syntax (which is based on XML) are introduced. BioPNML is designed to provide a starting point for the development of a standard interchange format for Bioinformatics and Petri nets. The language makes it possible to exchange biology Petri net diagrams between all supported hardware platforms and versions. It is also designed to associate Petri net models and other known metabolic simulators. A web-based metabolic information retrieval system, PathAligner, is developed in order to predict metabolic pathways from rudimentary elements of pathways. It extracts metabolic information from biological databases via the Internet, and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also provides a navigation platform to investigate metabolic related information, and transforms the output data into XML files for further modeling and simulation of the reconstructed pathway. An alignment algorithm to compare the similarity between metabolic pathways is presented. A new definition of the metabolic pathway is proposed. The pathway defined as a linear event sequence is practical for our alignment algorithm. The algorithm is based on strip scoring the similarity of 4-hierarchical EC numbers involved in the pathways. The algorithm described has been implemented and is in current use in the context of the PathAligner system. Furthermore, new methods for the classification and nomenclature of cellular signal transductions are recommended. For each type of characterized signal transduction, a unique ST number is provided. The Signal Transduction Classification Database (STCDB), based on the proposed classification and nomenclature, has been established. By merging the ST numbers with EC numbers, alignments of biopathways are possible. Finally, a detailed model of urea cycle that includes gene regulatory networks, metabolic pathways and signal transduction is demonstrated by using our approaches. A system biological interpretation of the observed behavior of the urea cycle and its related transcriptomics information is proposed to provide new insights for metabolic engineering and medical care

    Mutual Mobile Membranes with Timers

    Full text link
    A feature of current membrane systems is the fact that objects and membranes are persistent. However, this is not true in the real world. In fact, cells and intracellular proteins have a well-defined lifetime. Inspired from these biological facts, we define a model of systems of mobile membranes in which each membrane and each object has a timer representing their lifetime. We show that systems of mutual mobile membranes with and without timers have the same computational power. An encoding of timed safe mobile ambients into systems of mutual mobile membranes with timers offers a relationship between two formalisms used in describing biological systems

    Computational Techniques for the Structural and Dynamic Analysis of Biological Networks

    Get PDF
    The analysis of biological systems involves the study of networks from different omics such as genomics, transcriptomics, metabolomics and proteomics. In general, the computational techniques used in the analysis of biological networks can be divided into those that perform (i) structural analysis, (ii) dynamic analysis of structural prop- erties and (iii) dynamic simulation. Structural analysis is related to the study of the topology or stoichiometry of the biological network such as important nodes of the net- work, network motifs and the analysis of the flux distribution within the network. Dy- namic analysis of structural properties, generally, takes advantage from the availability of interaction and expression datasets in order to analyze the structural properties of a biological network in different conditions or time points. Dynamic simulation is useful to study those changes of the biological system in time that cannot be derived from a structural analysis because it is required to have additional information on the dynamics of the system. This thesis addresses each of these topics proposing three computational techniques useful to study different types of biological networks in which the structural and dynamic analysis is crucial to answer to specific biological questions. In particu- lar, the thesis proposes computational techniques for the analysis of the network motifs of a biological network through the design of heuristics useful to efficiently solve the subgraph isomorphism problem, the construction of a new analysis workflow able to integrate interaction and expression datasets to extract information about the chromo- somal connectivity of miRNA-mRNA interaction networks and, finally, the design of a methodology that applies techniques coming from the Electronic Design Automation (EDA) field that allows the dynamic simulation of biochemical interaction networks and the parameter estimation
    corecore