6,602 research outputs found

    Timed Atomic Commitment

    Get PDF
    In a large class of hard-real-time control applications, components execute concurrently on distributed nodes and must coordinate, under timing constraints, to perform the control task. As such, they perform a type of atomic commitment. Traditional atomic commitment differs, however, because there are no timing constraints; agreement is eventual. We therefore define timed atomic commitment (TAC) which requires the processes to be functionally consistent, but allows the outcome to include an exceptional state, indicating that timing constraints have been violated. We then present centralized and decentralized protocols to implement TAC and a high-level language construct that facilitates its use in distributed real-time programming

    Timed Atomic Commitment

    Get PDF
    In a large class of hard-real-time control applications, components execute concurrently on distributed nodes and must coordinate, under timing constraints, to perform the control task. As such, they perform a type of atomic commitment. Traditional atomic commitment differs, however, because there are no timing constraints; agreement is eventual. We therefore define timed atomic commitment (TAC) which requires the processes to be functionally consistent, but allows the outcome to include an exceptional state, indicating that timing constraints have been violated. We then present centralized and decentralized protocols to implement TAC and a high-level language construct that facilitates its use in distributed real-time programming

    Cross Chain Atomic Swaps in the Absence of Time via Attribute Verifiable Timed Commitments

    Get PDF
    A Hash Time Lock Contract (HTLC) is a protocol that is commonly used to exchange payments across different blockchains. Using HTLC as a building block for cross blockchain atomic swaps has its drawbacks: The notion of time is handled differently in each blockchain, be it private or public. Additionally, if the swap ends up aborted, the funds are locked in escrow until the safety timeout expires. In this work we formulate a new cryptographic primitive: Attribute Verifiable Timed Commitment which enables to prove that a timed commitment commits to a value which possesses certain attributes. Using our cryptographic primitive, we describe a new cross chain atomic swap protocol that operates without blockchain derived time and unlike the state of the art, all parties can instantly abort the swap without waiting for the safety timeouts to expire. In order to prove in zero knowledge that a secret committed to using a timed commitment has a claimed hash value, we employ the MPC in the head technique by Ishai et al. and implement our zero-knowledge proof protocol and evaluate its performance. As part of our techniques, we develop a novel and efficient procedure for integer Lower-Than validation in arithmetic circuits which may be of independent interest

    Automatic analysis of distance bounding protocols

    Full text link
    Distance bounding protocols are used by nodes in wireless networks to calculate upper bounds on their distances to other nodes. However, dishonest nodes in the network can turn the calculations both illegitimate and inaccurate when they participate in protocol executions. It is important to analyze protocols for the possibility of such violations. Past efforts to analyze distance bounding protocols have only been manual. However, automated approaches are important since they are quite likely to find flaws that manual approaches cannot, as witnessed in literature for analysis pertaining to key establishment protocols. In this paper, we use the constraint solver tool to automatically analyze distance bounding protocols. We first formulate a new trace property called Secure Distance Bounding (SDB) that protocol executions must satisfy. We then classify the scenarios in which these protocols can operate considering the (dis)honesty of nodes and location of the attacker in the network. Finally, we extend the constraint solver so that it can be used to test protocols for violations of SDB in these scenarios and illustrate our technique on some published protocols.Comment: 22 pages, Appeared in Foundations of Computer Security, (Affiliated workshop of LICS 2009, Los Angeles, CA)

    Learning Linear Temporal Properties

    Full text link
    We present two novel algorithms for learning formulas in Linear Temporal Logic (LTL) from examples. The first learning algorithm reduces the learning task to a series of satisfiability problems in propositional Boolean logic and produces a smallest LTL formula (in terms of the number of subformulas) that is consistent with the given data. Our second learning algorithm, on the other hand, combines the SAT-based learning algorithm with classical algorithms for learning decision trees. The result is a learning algorithm that scales to real-world scenarios with hundreds of examples, but can no longer guarantee to produce minimal consistent LTL formulas. We compare both learning algorithms and demonstrate their performance on a wide range of synthetic benchmarks. Additionally, we illustrate their usefulness on the task of understanding executions of a leader election protocol

    A Byzantine Fault Tolerant Distributed Commit Protocol

    Full text link
    In this paper, we present a Byzantine fault tolerant distributed commit protocol for transactions running over untrusted networks. The traditional two-phase commit protocol is enhanced by replicating the coordinator and by running a Byzantine agreement algorithm among the coordinator replicas. Our protocol can tolerate Byzantine faults at the coordinator replicas and a subset of malicious faults at the participants. A decision certificate, which includes a set of registration records and a set of votes from participants, is used to facilitate the coordinator replicas to reach a Byzantine agreement on the outcome of each transaction. The certificate also limits the ways a faulty replica can use towards non-atomic termination of transactions, or semantically incorrect transaction outcomes.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200

    PDDL2.1: An extension of PDDL for expressing temporal planning domains

    Get PDF
    In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community
    • ā€¦
    corecore