275,098 research outputs found

    Taming a non-convex landscape with dynamical long-range order: memcomputing Ising benchmarks

    Full text link
    Recent work on quantum annealing has emphasized the role of collective behavior in solving optimization problems. By enabling transitions of clusters of variables, such solvers are able to navigate their state space and locate solutions more efficiently despite having only local connections between elements. However, collective behavior is not exclusive to quantum annealers, and classical solvers that display collective dynamics should also possess an advantage in navigating a non-convex landscape. Here, we give evidence that a benchmark derived from quantum annealing studies is solvable in polynomial time using digital memcomputing machines, which utilize a collection of dynamical components with memory to represent the structure of the underlying optimization problem. To illustrate the role of memory and clarify the structure of these solvers we propose a simple model of these machines that demonstrates the emergence of long-range order. This model, when applied to finding the ground state of the Ising frustrated-loop benchmarks, undergoes a transient phase of avalanches which can span the entire lattice and demonstrates a connection between long-range behavior and their probability of success. These results establish the advantages of computational approaches based on collective dynamics of continuous dynamical systems

    Monte Carlo algorithms are very effective in finding the largest independent set in sparse random graphs

    Full text link
    The effectiveness of stochastic algorithms based on Monte Carlo dynamics in solving hard optimization problems is mostly unknown. Beyond the basic statement that at a dynamical phase transition the ergodicity breaks and a Monte Carlo dynamics cannot sample correctly the probability distribution in times linear in the system size, there are almost no predictions nor intuitions on the behavior of this class of stochastic dynamics. The situation is particularly intricate because, when using a Monte Carlo based algorithm as an optimization algorithm, one is usually interested in the out of equilibrium behavior which is very hard to analyse. Here we focus on the use of Parallel Tempering in the search for the largest independent set in a sparse random graph, showing that it can find solutions well beyond the dynamical threshold. Comparison with state-of-the-art message passing algorithms reveals that parallel tempering is definitely the algorithm performing best, although a theory explaining its behavior is still lacking.Comment: 14 pages, 12 figure

    On the Properties of Energy Stable Flux Reconstruction Schemes for Implicit Large Eddy Simulation

    Get PDF
    We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased CourantFriedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids

    Modified Gravity Away from a Λ\LambdaCDM Background

    Full text link
    Within the effective field theory approach to cosmic acceleration, the background expansion can be specified separately from the gravitational modifications. We explore the impact of modified gravity in a background different from a cosmological constant plus cold dark matter (Λ\LambdaCDM) on the stability and cosmological observables, including covariance between gravity and expansion parameters. In No Slip Gravity the more general background allows more gravitational freedom, including both positive and negative Planck mass running. We examine the effects on cosmic structure growth, as well as showing that a viable positive integrated Sachs-Wolfe effect crosscorrelation easily arises from this modified gravity theory. Using current data we constrain parameters with a Monte Carlo analysis, finding a maximum running αM0.03|\alpha_M|\lesssim 0.03. We provide the modified {\tt hi\_class} code publicly on GitHub, now enabling computation and inclusion of the redshift space distortion observable fσ8f\sigma_8 as well as the No Slip Gravity modifications.Comment: 14 pages, 13 figures. Matches published version in JCAP, LCDM discussion adde

    The People\u27s Republic of China\u27s Potential Growth Rate: The Long-Run Constraints

    Get PDF
    We estimate the People’s Republic of China’s (PRC’s) potential growth rate in 2012 at 8.7% and at 9.2% for the average of 2008–2012, about the same as the average actual growth rate for this period. This rate is the natural growth rate, that is, the rate consistent with a constant unemployment rate and stable inflation. The PRC’s natural growth rate displays a downward trend since 2006, when it peaked at 11.1%. Probably the Great Recession has been an important factor, although we argue that there are other factors. We show that the PRC’s potential growth rate is not demand constrained, in particular by the balance of payments. The PRC’s potential growth rate is determined by the supply side of the economy, in particular by: (i) changes in the structure of the economy, in particular in the share of industrial employment; (ii) the working-age population; (iii) the share of net exports in gross domestic product (GDP); (iv) export growth; (v) the share of foreign direct investment (FDI) in GDP; and (vi) human capital accumulation
    corecore