410 research outputs found

    A new recursive algorithm for time-varying autoregressive (TVAR) model estimation and its application to speech analysis

    Get PDF
    This paper proposes a new state-regularized (SR) and QR decomposition based recursive least squares (QRRLS) algorithm with variable forgetting factor (VFF) for recursive coefficient estimation of time-varying autoregressive (AR) models. It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance and bias over traditional regularized RLS algorithm. It also increases the tracking speed by introducing a new measure of convergence status to control the FF. Simulations using synthetic and real speech signals show that the proposed method has improved tracking performance and reduced estimation error variance than conventional TVAR modeling methods during rapid changing of AR coefficients. © 2012 IEEE.published_or_final_versionThe 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20-23 May 2012. In IEEE International Symposium on Circuits and Systems Proceedings, 2012, p. 1026-102

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    Recursive Parametric Frequency/Spectrum Estimation for Nonstationary Signals With Impulsive Components Using Variable Forgetting Factor

    Get PDF
    published_or_final_versio

    A New State-Regularized QRRLS Algorithm with Variable Forgetting Factor

    Get PDF
    published_or_final_versio

    Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain

    Get PDF
    Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.Eje: IV - Workshop de procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI

    Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain

    Get PDF
    Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.Eje: IV - Workshop de procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore