530,487 research outputs found

    Experimental evaluation of Stress Intensity Factors from strain fields using Digital Image Correlation

    Get PDF
    P Lopez-Crespo, A. Garcia-Gonzalez, Experimental evaluation of Stress Intensity Factors from strain fields using Digital Image Correlation, Proceedings of Jornadas Idmati 2014, Barcelona, junio de 2014Optical techniques offer many benefits to experimentalist compared with gauge methods. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry, photo- and thermoelasticity, and various grid methods are non-contact, full-field and can have high resolution. However, they are expensive or require special surface preparation or provide reliable measurements only in certain locations (fringes). Moreover, these techniques are hard to apply in field conditions. In contrast, the image correlation technique is cheap, easy, versatile and requires minimal surface preparation. It is ideally suited for field application. In this work a two-dimensional image correlation method was used to measure in-plane displacement fields near crack tip. Linear elasticity was assumed outside the crack tip plasticity zone. In the elastic region Muskhelishvili's complex functions approach was used to calculate the stress intensity factors from the measured displacements. functions were used to calculate the stress intensity factors from the measured displacements. Computationally the problem is that of solving an overdetermined system of non-linear equations. In this work genetic algorithm was used to find the solution. The method was applied to fatigue cracks in 2 and 3 mm thick Al 7010 alloy plates loaded under mixed mode (I+II). The stress intensity factors were calculated to within 10-20% of the nominal applied values. In addition the crack tip location was calculated. The sensitivity of the technique to the experimental noise and the issues of the location and the number of the experimental data points will be discussed. Finally the extention of the method to a real time monitoring will be analysed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Modification of NIROS for Hemodynamic Imaging of Large Wounds

    Get PDF
    A near-infrared optical scanner (NIROS) has been developed for non-contact sub-surface imaging of wounds. The current device, NIROS, employs a light source system of different wavelengths to image the same region during diabetic foot imaging studies. However, the illumination region by the system had produced small area of illumination and weak signal intensity, limiting the extraction of oxy- (HbO) and deoxy-hemoglobin (HbR) signals from entire areas of the wound and peri-wound. Herein, the source system of NIROS was modified to assess the changes in blood flow, in terms of changes in HbO and HbR, with maximum illumination between the different regions and increased intensity of illumination. The modified NIROS will allow imaging of larger wounds (\u3e 8cm radius), such as venous leg ulcers and post-amputated diabetic foot ulcers, without adding to the patient time

    Elliptic supersonic jet morphology manipulation using sharp-tipped lobes

    Full text link
    Elliptic nozzle geometry is attractive for mixing enhancement of supersonic jets. However, jet dynamics, such as flapping, gives rise to high-intensity tonal sound. We experimentally manipulate the supersonic elliptic jet morphology by using two sharp-tipped lobes. The lobes are placed on either end of the minor axis in an elliptic nozzle. The design Mach number and the aspect ratio of the elliptic nozzle and the lobed nozzle are 2.0 and 1.65. The supersonic jet is exhausted into ambient at almost perfectly expanded conditions. Time-resolved schlieren imaging, longitudinal and cross-sectional planar laser Mie-scattering imaging, planar Particle Image Velocimetry, and near-field microphone measurements are performed to assess the fluidic behavior of the two nozzles. Dynamic Mode and Proper Orthogonal Decomposition (DMD and POD) analysis are carried out on the schlieren and the Mie-scattering images. Mixing characteristics are extracted from the Mie-scattering images through the image processing routines. The flapping elliptic jet consists of two dominant DMD modes, while the lobed nozzle has only one dominant mode, and the flapping is suppressed. Microphone measurements show the associated noise reduction. The jet column bifurcates in the lobed nozzle enabling a larger surface contact area with the ambient fluid and higher mixing rates in the near-field of the nozzle exit. The jet width growth rate of the two-lobed nozzle is about twice as that of the elliptic jet in the near-field, and there is a 40\% reduction in the potential core length. Particle Image Velocimetry (PIV) contours substantiate the results.Comment: 19 pages, 16 figures. Revised version submitted to Physics of Fluids for peer review. URL of the Video files (Fig. 6 & Fig. 14) are given in the text files (see in '/anc/*.txt'

    Consensus on recording of gas permeable contact lens fit

    Get PDF
    Purpose: To develop a new schematic scheme for efficiently recording the key parameters of gas permeable contact lens (GP) fits based on current consensus. Methods: Over 100 established GP fitters and educators met to discuss the parameters proposed in educational material for evaluating GP fit and concluded on the key parameters that should be recorded. The accuracy and variability of evaluating the fluorescein pattern of GP fit was determined by having 35 experienced contact lens practitioners from across the world, grading 5 images of a range of fits and the topographer simulation of the same fits, in random, order using the proposed scheme. The accuracy of the grading was compared to objective image analysis of the fluorescein intensity of the same images. Results: The key information to record to adequately describe the fit of an GP was agreed as: the manufacturer, brand and lens parameters; settling time; comfort on a 5 point scale; centration; movement on blink on a ±2 scale; and the Primary Fluorescein Pattern in the central, mid-peripheral and edge regions of the lens averaged along the horizontal and vertical lens axes, on a ±2 scale. On average 50-60% of practitioners selected the median grade when subjectively rating fluorescein intensity and this was correlated to objective quantification (r= 0.602, p< 0.001). Objective grading suggesting horizontal median fluorescein intensity was generally symmetrical, as was the vertical meridian, but this was not the case for subjective grading. Simulated fluorescein patterns were subjectively and objectively graded as being less intense than real photographs (p< 0.01). Conclusion: GP fit recording can be standardised and simplified to enhance GP practice. © 2013 British Contact Lens Association

    High-Speed Vision and Force Feedback for Motion-Controlled Industrial Manipulators

    Get PDF
    Over the last decades, both force sensors and cameras have emerged as useful sensors for different applications in robotics. This thesis considers a number of dynamic visual tracking and control problems, as well as the integration of these techniques with contact force control. Different topics ranging from basic theory to system implementation and applications are treated. A new interface developed for external sensor control is presented, designed by making non-intrusive extensions to a standard industrial robot control system. The structure of these extensions are presented, the system properties are modeled and experimentally verified, and results from force-controlled stub grinding and deburring experiments are presented. A novel system for force-controlled drilling using a standard industrial robot is also demonstrated. The solution is based on the use of force feedback to control the contact forces and the sliding motions of the pressure foot, which would otherwise occur during the drilling phase. Basic methods for feature-based tracking and servoing are presented, together with an extension for constrained motion estimation based on a dual quaternion pose parametrization. A method for multi-camera real-time rigid body tracking with time constraints is also presented, based on an optimal selection of the measured features. The developed tracking methods are used as the basis for two different approaches to vision/force control, which are illustrated in experiments. Intensity-based techniques for tracking and vision-based control are also developed. A dynamic visual tracking technique based directly on the image intensity measurements is presented, together with new stability-based methods suitable for dynamic tracking and feedback problems. The stability-based methods outperform the previous methods in many situations, as shown in simulations and experiments

    Motion studies of high current arcs using an optical fibre array imaging system

    No full text
    This paper presents an integrated portable measurement system for thestudy of high speed and high temperature unsteady plasma flows such as thosefound in the vicinity of high current switching arcs. The system permits direct andnon-intrusive measurement of arc light emission images with a capture rate of 1million images per second (1MHz), and 8 bit intensity resolution. Novel softwaretechniques are reported to measure arc trajectories. Results are presented on singlehigh current (2kA) discharge events where the electrode and arc runner surfaces areinvestigated using 3D laser scanning methods; such that the position of the arc rootson the runner can be correlated to the measured trajectories. The results showevidence of the cathode arc root stepping along the arc runners<br/

    Motion studies of high current arcs using an optical fibre array imaging system

    No full text
    This paper presents an integrated portable measurement system for thestudy of high speed and high temperature unsteady plasma flows such as thosefound in the vicinity of high current switching arcs. The system permits direct andnon-intrusive measurement of arc light emission images with a capture rate of 1million images per second (1MHz), and 8 bit intensity resolution. Novel softwaretechniques are reported to measure arc trajectories. Results are presented on singlehigh current (2kA) discharge events where the electrode and arc runner surfaces areinvestigated using 3D laser scanning methods; such that the position of the arc rootson the runner can be correlated to the measured trajectories. The results showevidence of the cathode arc root stepping along the arc runners<br/

    Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting

    Get PDF
    A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the open-circuit potentials (Eoc), short-circuit photocurrent densities (Jsc), and current density vs. applied potential (J–E) behavior under visible light irradiation. The high-throughput measurement of Eoc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The Eoc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions

    Motion studies of cathode roots in high current arcs using an optical fibre array based imaging system

    No full text
    This paper presents an integrated portable measurement system for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. The system permits direct and non-intrusive measurement of arc light emission images with a capture rate of 1 million images per second (1MHz), and 8 bit intensity resolution. Novel software techniques are reported to measure arc trajectories. Results are presented on single high current (2kA) discharge events where the electrode and arc runner surfaces are investigated using 3D laser scanning methods; such that the position of the arc roots on the runner can be correlated to the measured trajectories. The results show evidence of the cathode arc root stepping along the arc runners, and regions of where the arc runner is eroded by a stationary arc
    • …
    corecore