5 research outputs found

    Numerical Analysis of Defects Caused by Thermolysis in an Infinite Cylindrical Ceramic Moulding

    Get PDF
    The second-order parabolic (diffusion) equation, which governs the concentration of monomer during pyrolysis of a cylindrical ceramic moulding containing a polymer which degrades to monomer only, is solved: an infinite cylinder is considered. The method of lines is used to transform the partial differential equation into a system of first-order linear ordinary differential equations, the solution of which is seen to satisfy a recurrence relation. The concentration profile at a given time is computed by replacing the matrix exponential terms in this recurrence relation by a high-order Pade approximate. A parallel algorithm using two processors is developed by taking the partial fraction decomposition of the Pade approximate and a (matrix) rational expression in the recurrence relation

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances

    System- and Data-Driven Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques

    Preconditioned fast solvers for large linear systems with specific sparse and/or Toeplitz-like structures and applications

    Get PDF
    In this thesis, the design of the preconditioners we propose starts from applications instead of treating the problem in a completely general way. The reason is that not all types of linear systems can be addressed with the same tools. In this sense, the techniques for designing efficient iterative solvers depends mostly on properties inherited from the continuous problem, that has originated the discretized sequence of matrices. Classical examples are locality, isotropy in the PDE context, whose discrete counterparts are sparsity and matrices constant along the diagonals, respectively. Therefore, it is often important to take into account the properties of the originating continuous model for obtaining better performances and for providing an accurate convergence analysis. We consider linear systems that arise in the solution of both linear and nonlinear partial differential equation of both integer and fractional type. For the latter case, an introduction to both the theory and the numerical treatment is given. All the algorithms and the strategies presented in this thesis are developed having in mind their parallel implementation. In particular, we consider the processor-co-processor framework, in which the main part of the computation is performed on a Graphics Processing Unit (GPU) accelerator. In Part I we introduce our proposal for sparse approximate inverse preconditioners for either the solution of time-dependent Partial Differential Equations (PDEs), Chapter 3, and Fractional Differential Equations (FDEs), containing both classical and fractional terms, Chapter 5. More precisely, we propose a new technique for updating preconditioners for dealing with sequences of linear systems for PDEs and FDEs, that can be used also to compute matrix functions of large matrices via quadrature formula in Chapter 4 and for optimal control of FDEs in Chapter 6. At last, in Part II, we consider structured preconditioners for quasi-Toeplitz systems. The focus is towards the numerical treatment of discretized convection-diffusion equations in Chapter 7 and on the solution of FDEs with linear multistep formula in boundary value form in Chapter 8
    corecore