310 research outputs found

    Architecting system of systems: artificial life analysis of financial market behavior

    Get PDF
    This research study focuses on developing a framework that can be utilized by system architects to understand the emergent behavior of system architectures. The objective is to design a framework that is modular and flexible in providing different ways of modeling sub-systems of System of Systems. At the same time, the framework should capture the adaptive behavior of the system since evolution is one of the key characteristics of System of Systems. Another objective is to design the framework so that humans can be incorporated into the analysis. The framework should help system architects understand the behavior as well as promoters or inhibitors of change in human systems. Computational intelligence tools have been successfully used in analysis of Complex Adaptive Systems. Since a System of Systems is a collection of Complex Adaptive Systems, a framework utilizing combination of these tools can be developed. Financial markets are selected to demonstrate the various architectures developed from the analysis framework --Introduction, page 3

    A Neurogenetic Algorithm Based on Rational Agents

    Get PDF
    Lately, a lot of research has been conducted on the automatic design of artificial neural networks (ADANNs) using evolutionary algorithms, in the so-called neuro-evolutive algorithms (NEAs). Many of the presented proposals are not biologically inspired and are not able to generate modular, hierarchical and recurrent neural structures, such as those often found in living beings capable of solving intricate survival problems. Bearing in mind the idea that a nervous system's design and organization is a constructive process carried out by genetic information encoded in DNA, this paper proposes a biologically inspired NEA that evolves ANNs using these ideas as computational design techniques. In order to do this, we propose a Lindenmayer System with memory that implements the principles of organization, modularity, repetition (multiple use of the same sub-structure), hierarchy (recursive composition of sub-structures), minimizing the scalability problem of other methods. In our method, the basic neural codification is integrated to a genetic algorithm (GA) that implements the constructive approach found in the evolutionary process, making it closest to biological processes. Thus, the proposed method is a decision-making (DM) process, the fitness function of the NEA rewards economical artificial neural networks (ANNs) that are easily implemented. In other words, the penalty approach implemented through the fitness function automatically rewards the economical ANNs with stronger generalization and extrapolation capacities. Our method was initially tested on a simple, but non-trivial, XOR problem. We also submit our method to two other problems of increasing complexity: time series prediction that represents consumer price index and prediction of the effect of a new drug on breast cancer. In most cases, our NEA outperformed the other methods, delivering the most accurate classification. These superior results are attributed to the improved effectiveness and efficiency of NEA in the decision-making process. The result is an optimized neural network architecture for solving classification problems

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Evolving Artificial Neural Networks using Cartesian Genetic Programming

    Get PDF
    NeuroEvolution is the application of Evolutionary Algorithms to the training of Artificial Neural Networks. NeuroEvolution is thought to possess many benefits over traditional training methods including: the ability to train recurrent network structures, the capability to adapt network topology, being able to create heterogeneous networks of arbitrary transfer functions, and allowing application to reinforcement as well as supervised learning tasks. This thesis presents a series of rigorous empirical investigations into many of these perceived advantages of NeuroEvolution. In this work it is demonstrated that the ability to simultaneously adapt network topology along with connection weights represents a significant advantage of many NeuroEvolutionary methods. It is also demonstrated that the ability to create heterogeneous networks comprising a range of transfer functions represents a further significant advantage. This thesis also investigates many potential benefits and drawbacks of NeuroEvolution which have been largely overlooked in the literature. This includes the presence and role of genetic redundancy in NeuroEvolution's search and whether program bloat is a limitation. The investigations presented focus on the use of a recently developed NeuroEvolution method based on Cartesian Genetic Programming. This thesis extends Cartesian Genetic Programming such that it can represent recurrent program structures allowing for the creation of recurrent Artificial Neural Networks. Using this newly developed extension, Recurrent Cartesian Genetic Programming, and its application to Artificial Neural Networks, are demonstrated to be extremely competitive in the domain of series forecasting

    Evolving Graphs by Graph Programming

    Get PDF
    Graphs are a ubiquitous data structure in computer science and can be used to represent solutions to difficult problems in many distinct domains. This motivates the use of Evolutionary Algorithms to search over graphs and efficiently find approximate solutions. However, existing techniques often represent and manipulate graphs in an ad-hoc manner. In contrast, rule-based graph programming offers a formal mechanism for describing relations over graphs. This thesis proposes the use of rule-based graph programming for representing and implementing genetic operators over graphs. We present the Evolutionary Algorithm Evolving Graphs by Graph Programming and a number of its extensions which are capable of learning stateful and stateless digital circuits, symbolic expressions and Artificial Neural Networks. We demonstrate that rule-based graph programming may be used to implement new and effective constraint-respecting mutation operators and show that these operators may strictly generalise others found in the literature. Through our proposal of Semantic Neutral Drift, we accelerate the search process by building plateaus into the fitness landscape using domain knowledge of equivalence. We also present Horizontal Gene Transfer, a mechanism whereby graphs may be passively recombined without disrupting their fitness. Through rigorous evaluation and analysis of over 20,000 independent executions of Evolutionary Algorithms, we establish numerous benefits of our approach. We find that on many problems, Evolving Graphs by Graph Programming and its variants may significantly outperform other approaches from the literature. Additionally, our empirical results provide further evidence that neutral drift aids the efficiency of evolutionary search

    Field Guide to Genetic Programming

    Get PDF

    A substitution of the general partial differential equation with extended polynomial networks

    Get PDF
    General partial differential equations, which can describe any complex functions, may be solved by means of the dimensional similarity analysis to model polynomial data relations of discrete data observations. Designed new differential polynomial networks define and substitute for a selective form of the general partial differential equation using fraction derivative units to model an unknown system or pattern. Convergent series of relative derivative substitution terms, produced in all network layers describe partial derivative changes of some combinations of input variables to generalize elementary polynomial data relations. The general differential equation is decomposed into polynomial network backward structure, which defines simple and composite sum derivative terms in respect of previous layers variables. The proposed method enables to form more complex and varied derivative selective series models than standard soft computing techniques allow. The sigmoidal function, commonly employed as an activation function in artificial neurons, may improve the polynomial and substituting derivative term abilities to approximate complicated periodic multi-variable or time-series functions in a system model
    • …
    corecore