2,099 research outputs found

    Detection of Condensed Vehicle Gas Exhaust in LiDAR Point Clouds

    Full text link
    LiDAR sensors used in autonomous driving applications are negatively affected by adverse weather conditions. One common, but understudied effect, is the condensation of vehicle gas exhaust in cold weather. This everyday phenomenon can severely impact the quality of LiDAR measurements, resulting in a less accurate environment perception by creating artifacts like ghost object detections. In the literature, the semantic segmentation of adverse weather effects like rain and fog is achieved using learning-based approaches. However, such methods require large sets of labeled data, which can be extremely expensive and laborious to get. We address this problem by presenting a two-step approach for the detection of condensed vehicle gas exhaust. First, we identify for each vehicle in a scene its emission area and detect gas exhaust if present. Then, isolated clouds are detected by modeling through time the regions of space where gas exhaust is likely to be present. We test our method on real urban data, showing that our approach can reliably detect gas exhaust in different scenarios, making it appealing for offline pre-labeling and online applications such as ghost object detection.Comment: Accepted for ITSC202

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Design, Fabrication, and Testing of a Multi-Cycle Pulse Detonation Engine

    Get PDF
    With the constant drive to improve the efficiency of systems used to generate heat and work pulse detonation engines have been explored. Pulse detonation engines can be described by the Humphrey thermodynamic cycle which, in theory, has advantages over the Brayton, Otto, and Diesel cycles.;This work is concerned with the design, fabrication, and the initial tests of a pulse detonation laboratory test bed. The test bed was designed with modularity and ease of alteration in mind while ensuring that a wide range of detonable fuel and oxidizer mixtures where able to be utilized.;Initial testing with a methane and oxygen mixture showed repeatable detonations in both single shot and cyclic operating modes. The expected detonation velocity was 2390m/s. Detonation was monitored with ionization probes and detonation velocities of 2391m/s were found as close as 30 from ignition source and some form of detonation as close as 6 from the ignition source

    Thermoelectric Energy Harvesting: Basic Principles and Applications

    Get PDF
    Green energy harvesting aims to supply electricity to electric or electronic systems from one or different energy sources present in the environment without grid connection or utilisation of batteries. These energy sources are solar (photovoltaic), movements (kinetic), radio-frequencies and thermal energy (thermoelectricity). The thermoelectric energy harvesting technology exploits the Seebeck effect. This effect describes the conversion of temperature gradient into electric power at the junctions of the thermoelectric elements of a thermoelectric generator (TEG) device. This device is a robust and highly reliable energy converter, which aims to generate electricity in applications in which the heat would be otherwise dissipated. The significant request for thermoelectric energy harvesting is justified by developing new thermoelectric materials and the design of new TEG devices. Moreover, the thermoelectric energy harvesting devices are used for waste heat harvesting in microscale applications. Potential TEG applications as energy harvesting modules are used in medical devices, sensors, buildings and consumer electronics. This chapter presents an overview of the fundamental principles of thermoelectric energy harvesting and their low-power applications

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Energy Technology Division research summary 2001.

    Full text link
    corecore