23,712 research outputs found

    Time-Frequency characterisation for electric load monitoring

    No full text
    Electric utilities and consumers are increasingly interested in energy monitoring for economic and environmental reasons. A non-intrusive solution may rely on information extracted from the electric consumption measured at a centralized part of a distribution network. The problem at hands consists in the separation of the electric load into its major components. This problem of source separation from one sensor is quite tractable under certain conditions. In this work, the focus is made on the most consuming household appliance in France: the space-heating. It is a sum of an unknown number of pseudo-periodic signals embedded in the global active power. An unsupervised algorithm to determine the space-heating schedule from the global consumption based on the interpretation of the spaceheating signature in the time-frequency domain is proposed. The proposed method conjoins a time-frequency detector and a frequent itemsets extraction. First results on real data are quite satisfying

    Electric vehicle battery performance investigation based on real world current harmonics

    Get PDF
    Electric vehicle (EV) powertrains consist of power electronic components as well as electric machines to manage the energy flow between different powertrain subsystems and to deliver the necessary torque and power requirements at the wheels. These power subsystems can generate undesired electrical harmonics on the direct current (DC) bus of the powertrain. This may lead to the on-board battery being subjected to DC current superposed with undesirable high- and low- frequency current oscillations, known as ripples. From real-world measurements, significant current harmonics perturbations within the range of 50 Hz to 4 kHz have been observed on the high voltage DC bus of the EV. In the limited literature, investigations into the impact of these harmonics on the degradation of battery systems have been conducted. In these studies, the battery systems were supplied by superposed current signals i.e., DC superposed by a single frequency alternating current (AC). None of these studies considered applying the entire spectrum of the ripple current measured in the real-world scenario, which is focused on in this research. The preliminary results indicate that there is no difference concerning capacity fade or impedance rise between the cells subjected to just DC current and those subjected additionally to a superposed AC ripple current

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    Review of recent research towards power cable life cycle management

    Get PDF
    Power cables are integral to modern urban power transmission and distribution systems. For power cable asset managers worldwide, a major challenge is how to manage effectively the expensive and vast network of cables, many of which are approaching, or have past, their design life. This study provides an in-depth review of recent research and development in cable failure analysis, condition monitoring and diagnosis, life assessment methods, fault location, and optimisation of maintenance and replacement strategies. These topics are essential to cable life cycle management (LCM), which aims to maximise the operational value of cable assets and is now being implemented in many power utility companies. The review expands on material presented at the 2015 JiCable conference and incorporates other recent publications. The review concludes that the full potential of cable condition monitoring, condition and life assessment has not fully realised. It is proposed that a combination of physics-based life modelling and statistical approaches, giving consideration to practical condition monitoring results and insulation response to in-service stress factors and short term stresses, such as water ingress, mechanical damage and imperfections left from manufacturing and installation processes, will be key to success in improved LCM of the vast amount of cable assets around the world

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin
    corecore