28,489 research outputs found

    ISAR Image formation with a combined Empirical Mode Decomposition and Time-Frequency Representation

    No full text
    International audienceIn this paper, a method for Inverse Synthetic Aperture Radar (ISAR) image formation based on the use of the Complex Empirical Mode Decomposition (CEMD) is proposed. The CEMD [1] which based on the Empirical Mode Decomposition (EMD) is used in conjunction with a Time-Frequency Representation (TFR) to estimate a 3-D time-range-Doppler Cubic image, which we can use to effectively extract a sequence of ISAR 2-D range-Doppler images. The potential of the proposed method to construct ISAR image is illustrated by simulations results performed on synthetic data and compared to 2-D Fourier Transform and TFR methods. The simulation results indicate that this method can provide ISAR images with a good resolution. These results demonstrate the potential application of the proposed method for ISAR image formation

    ISAR imaging Based on the Empirical Mode Decomposition Time-Frequency Representation

    No full text
    International audienceThis work proposes an adaptation of the Empirical Mode Decomposition Time-Frequency Distribution (EMD-TFD) to non-analytic complex-valued signals. Then, the modified version of EMD-TFD is used in the formation of Inverse Synthetic Aperture Radar (ISAR) image. This new method, referred to as NSBEMD-TFD, is obtained by extending the Non uniformly Sampled Bivariate Empirical Mode Decomposition (NSBEMD) to design a filter in the ambiguity domain and to clean the Time-Frequency Distribution (TFD) of signal. The effectiveness of the proposed scheme of ISAR formation is illustrated on synthetic and real signals. The results of our proposed methods are compared to other Time-Frequency Representation (TFR) such as Spectrogram, Wigner-Ville Distribution (WVD), Smoothed Pseudo Wigner-Ville Distribution (SPWVD) or others methods based on EMD

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Microwave Radar-Based Breast Cancer Detection:Imaging in Inhomogeneous Breast Phantoms

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Joint sparsity-driven inversion and model error correction for radar imaging

    Get PDF
    Solution of inverse problems in imaging requires the use of a mathematical model of the observation process. However such models often involve errors and uncertainties themselves. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed image. Mostly, phase errors vary only in cross-range direction. However, in many situations, it is possible to encounter 2D phase errors, which are both range and cross-range dependent. We propose a sparsity-driven method for joint SAR imaging and correction of 1D as well as 2D phase errors. This method performs phase error correction during the image formation process and provides focused, high-resolution images. Experimental results show the effectiveness of the approach
    • …
    corecore