30,666 research outputs found

    Fractional fourier transform based monopulse radar for combating jamming interference

    Get PDF
    Monopulse radars are used to track a target that appears in the look direction beam width. The distortion produced when manmade high power interference (jamming). Jamming scenarios are achieved by introducing high power interference to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This leads to errors in the target tracking angles that may cause target mistracking. A new monopulse radar structure is presented in this paper which offers a solution to this problem. This structure is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The proposed system configurations with the optimum FrFT filters is shown to reduce the simulated interfered signal and improve the signal to noise ratio (SNR) in the processors outputs in both processor using the proposed monopulse structure

    Enhanced monopulse radar tracking using optimum fractional Fourier transform

    Get PDF
    Conventional monopulse radar processors are used to track a target that appears in the look direction beam width. The distortion produced when additional targets appear in the look direction beam width can cause severe erroneous outcomes from the monopulse processor. This leads to errors in the target tracking angles that may cause target mistracking. A new signal processing algorithm is presented in this paper which offers a solution to this problem. The technique is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The relative performance of the new filtering method over traditional based methods is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configuration succeeds in significantly cancelling additional target signals appearing in the look direction beam width even if these targets have the same Doppler frequency

    Radar matched filtering using the fractional fourier transform

    Get PDF
    Abstract-A matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in the presence of additive noise. Matched filters are commonly used in radar systems where the transmitted signal is known and may be used as a replica to be correlated with the received signal which can be carried out by multiplication in the frequency domain by applying Fourier Transform (FT). Fractional Fourier transform (FrFT) is the general case for the FT and is superior in chirp pulse compression using the optimum FrFT order. In this paper a matched filter is implemented for a chirp radar signal in the optimum FrFT domain. Mathematical formula for a received chirp signal in the frequency domain and a generalized formula in the fractional Fourier domain are presented in this paper using the Principle of Stationary Phase (PSP). These mathematical expressions are used to show the limitations of the matched filter in the fractional Fourier domain. The parameters that affect the chirp signal in the optimum fractional Fourier domain are described. The performance enhancement by using the matched filter in the fractional Fourier domain for special cases is presented

    Noise in a Calorimeter Readout System Using Periodic Sampling

    Get PDF
    Fourier transform analysis of the calorimeter noise problem gives quantitative results on a) the time-height correlation, b) the effect of background on optimal shaping and on the ENC, c) sampling frequency requirements, and d) the relation between sampling frequency and the required quantization error

    A new fractional Fourier transform based monopulse tracking radar processor

    Get PDF
    Conventional monopulse radar processors are used to track a target that appears in the look direction beam width. The distortion produced when additional targets appear in the look direction beam width can cause severe erroneous outcomes from the monopulse processor. This leads to errors in the target tracking angles that may cause the target tracker to fail. A new signal processing algorithm is presented in this paper that is based on the use of optimal Fractional Fourier Transform (FrFT) filtering to solve this problem. The relative performance of the new filtering method over traditional based methods is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configurations with the optimum FrFT filters succeeds in effectively cancelling additional target signals appearing in the look direction beam width

    Matched-Filter Detection of Mode-Locked Laser Signals

    Get PDF
    The passive Fabry-Perot cavity is shown to be a good practical approach to the match-filter optimization for the sensitive detection of mode-locked laser signals. Doppler measurements of relative motion over a wide range of velocities are possible simply by measuring the cavity length for a peak output

    Enhanced monopulse radar tracking using fractional Fourier filtering in the presence of interference

    Get PDF
    Monopulse radars are used to track a target that appears in the look direction beam width. Significant distortion is produced when manmade high power interference (jamming) is introduced to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This leads to errors in the target tracking angles that may cause target mistracking. A new monopulse radar structure is presented in this paper which addresses this problem. This structure is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The improved performance of the new monopulse radar structure over the traditional monopulse processor is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configurations with the optimum FrFT filters is shown to reduce the interfered signal and to minimize the STDAE for monopulse processors
    • …
    corecore