1,936 research outputs found

    A Convex Approach to Path Tracking with Obstacle Avoidance for Pseudo-Omnidirectional Vehicles

    Get PDF
    This report addresses the related problems of trajectory generation and time-optimal path tracking with online obstacle avoidance. We consider the class of four-wheeled vehicles with independent steering and driving on each wheel, also referred to as pseudo-omnidirectional vehicles. Appropriate approximations of the dynamic model enable a convex reformulation of the path-tracking problem. Using the precomputed trajectories together with model predictive control that utilizes feedback from the estimated global pose, provides robustness to model uncertainty and disturbances. The considered approach also incorporates avoidance of a priori unknown moving obstacles by local online replanning. We verify the approach by successful execution on a pseudo-omnidirectional mobile robot, and compare it to an existing algorithm. The result is a significant decrease in the time for completing the desired path. In addition, the method allows a smooth velocity trajectory while avoiding intermittent stops in the path execution

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application
    corecore